135
回編集
Kentaro Katahira (トーク | 投稿記録) 細 (→モデルフィッティング) |
Kentaro Katahira (トーク | 投稿記録) 細 (→適用事例) |
||
93行目: | 93行目: | ||
[[Image:DDM_z_vs_v.png|thumb|520px|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は比較のための基準となるモデル (<math>v = 1.0</math>, <math>z = 0.5</math>, <math>a = 1.0</math>) を表す。縦軸のスケールが異なるが,左右のパネルで同じ分布である。左のパネルではドリフト率を大きくした場合 (<math>v = 2.0</math>) ,右のパネルでは開始点を高くした場合 (<math>z = 0.7</math>) の結果をそれぞれ実線で表している。]] | [[Image:DDM_z_vs_v.png|thumb|520px|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は比較のための基準となるモデル (<math>v = 1.0</math>, <math>z = 0.5</math>, <math>a = 1.0</math>) を表す。縦軸のスケールが異なるが,左右のパネルで同じ分布である。左のパネルではドリフト率を大きくした場合 (<math>v = 2.0</math>) ,右のパネルでは開始点を高くした場合 (<math>z = 0.7</math>) の結果をそれぞれ実線で表している。]] | ||
ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。 | |||
例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図3の左のパネルでは,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させている (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,反応時間の分布のピーク (最も密度が高くなる位置) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図3右) は,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなっている。 | |||
ヒトやその他の動物の意思決定には,現在の感覚入力や過去の選択の結果のみならず,過去の選択履歴が次の選択に影響することが知られている。同じ選択を繰り返す傾向は選択の慣性 (inertia) や固執性 (perseverance) と呼ばれている<ref><pubmed>24333055</pubmed></ref>。そのような傾向はドリフト拡散モデルではエビデンスの蓄積の開始点にバイアスを与えるという解釈が可能である。しかし,実際の知覚的意思決定課題における選択データにおいては,過去と同じ選択肢が選ばれる効果は,図3左のように比較的反応が遅い場合でも見られ,そのようなデータは開始点よりはむしろドリフト率が過去と同じ選択をする方向にバイアスがかかるとするモデルでよく説明されることが報告されている<ref><pubmed>31264959</pubmed></ref>。この結果は,選択履歴の効果が,知覚的なエビデンスの蓄積過程に影響するということを示唆している。 | ヒトやその他の動物の意思決定には,現在の感覚入力や過去の選択の結果のみならず,過去の選択履歴が次の選択に影響することが知られている。同じ選択を繰り返す傾向は選択の慣性 (inertia) や固執性 (perseverance) と呼ばれている<ref><pubmed>24333055</pubmed></ref>。そのような傾向はドリフト拡散モデルではエビデンスの蓄積の開始点にバイアスを与えるという解釈が可能である。しかし,実際の知覚的意思決定課題における選択データにおいては,過去と同じ選択肢が選ばれる効果は,図3左のように比較的反応が遅い場合でも見られ,そのようなデータは開始点よりはむしろドリフト率が過去と同じ選択をする方向にバイアスがかかるとするモデルでよく説明されることが報告されている<ref><pubmed>31264959</pubmed></ref>。この結果は,選択履歴の効果が,知覚的なエビデンスの蓄積過程に影響するということを示唆している。 | ||
ドリフト拡散モデルのパラメータの推定値を利用して,選択に関するプロセスの個人差に影響する要因も検討されている。代表的な事例は加齢の効果について調べたものである。例えば高齢者は一般に多くの認知課題において反応が遅くなることが示されているが,ドリフト拡散モデルを適用して検討した研究では,高齢者の反応には長い非決定時間,そして境界の間隔が大きいという特徴はあるものの,ドリフト率には若年者との違いはないということが報告されている<ref><pubmed>19962693</pubmed></ref> | ドリフト拡散モデルのパラメータの推定値を利用して,選択に関するプロセスの個人差に影響する要因も検討されている。代表的な事例は加齢の効果について調べたものである。例えば高齢者は一般に多くの認知課題において反応が遅くなることが示されているが,ドリフト拡散モデルを適用して検討した研究では,高齢者の反応には長い非決定時間,そして境界の間隔が大きいという特徴はあるものの,ドリフト率には若年者との違いはないということが報告されている<ref><pubmed>19962693</pubmed></ref>。 | ||
一方で,幼児では境界パラメータが大きく,非決定時間が長いことに加え,ドリフト率も比較的小さいことが示されている<ref><pubmed>22188547</pubmed></ref>。また,注意欠如・多動症 (ADHD) や読字障害 (dyslexia) を有する若年者はそうでない統制群に比べ,ドリフト率が低い傾向があることを示した研究もある<ref><pubmed>20926067</pubmed></ref><ref><pubmed>22010894</pubmed></ref>。知能指数 (IQ) に関しては,高IQ群は低IQ群よりドリフト率が2倍程度高いという結果が報告されている <ref><pubmed>19962693</pubmed></ref> <ref><pubmed>21707207</pubmed></ref> 。 | |||
==神経活動との対応== | ==神経活動との対応== |
回編集