77
回編集
細編集の要約なし |
細編集の要約なし |
||
42行目: | 42行目: | ||
===フィードバック投射による修飾=== | ===フィードバック投射による修飾=== | ||
V2ニューロンへの入力の2/ | V2ニューロンへの入力の2/3はV1からの投射であるとされ<ref><pubmed>12843271</pubmed></ref>、V1の活動を抑制するとV2ニューロンは反応しなくなる<ref><pubmed>405082</pubmed></ref><ref><pubmed>2600626</pubmed></ref>。一方、ほぼ同数の投射があるとされるV2からV1へのフィードバックを遮断すると、V1ニューロンの反応の選択性に顕著な変化はないが<ref><pubmed>6288886</pubmed></ref>、周辺抑制が変化する<ref><pubmed>23658187</pubmed></ref>。V2ニューロンはV1以外にもV4、V5/MT、視床枕(pulvinar)から入力を受けている。これらの入力を遮断すると、V2ニューロンで自発発火頻度や反応強度が経時的に増減する<ref><pubmed>34089102</pubmed></ref>。大きな受容野と複雑な刺激特性を持つ高い階層のニューロンからのフィードバック投射が、低い階層のニューロンの反応選択性の形成に果たす役割はよく分かっていない。 | ||
===非古典的受容野からの修飾=== | ===非古典的受容野からの修飾=== | ||
69行目: | 69行目: | ||
==知覚の神経メカニズム== | ==知覚の神経メカニズム== | ||
視覚前野の領野が特定の刺激特性に関与することから、視覚前野にも知覚判断の中枢として機能する領野があることが期待された。運動からの構造の知覚(後述)において知覚の変化に合わせてV5/ | 視覚前野の領野が特定の刺激特性に関与することから、視覚前野にも知覚判断の中枢として機能する領野があることが期待された。運動からの構造の知覚(後述)において知覚の変化に合わせてV5/MTのニューロンの反応が変化すること、ドットパターンの運動方向の知覚(後述)において以下の条件を満たすことから、V5/MTのニューロンがそうした視覚中枢の一つであることが示された。しかし、V5/MT以外の領野では、ニューロン活動と個体の知覚判断との因果関係を明らかにする試みはあまり成功していない。 | ||
一群のニューロンが特定の視知覚の神経メカニズム(神経相関、neural | 一群のニューロンが特定の視知覚の神経メカニズム(神経相関、neural correlates)であることを示すには、サルなどの動物を強制選択課題で訓練し、課題遂行中に電気活動を記録して、①ニューロンの反応選択性が知覚判断に必要な情報を十分に表すこと、②試行ごとに動物の知覚判断とニューロンの反応強度の間に相関関係が存在すること、③ある領野を局所的に破壊、麻痺、電気刺激することにより動物の知覚判断を操作できること、④曖昧な視覚刺激に対する試行ごとの知覚判断の変動がニューロンの反応強度の変動と相関すること、⑤知覚判断の表示方法(動作)と無関係であること、などの根拠を示す必要がある<ref><pubmed>1464765</pubmed></ref><ref><pubmed>1607944</pubmed></ref><ref><pubmed>3385495</pubmed></ref>。V5/MTでは、①領野内の大多数のニューロンが運動方向や両眼視差に選択性を示し、領野として特定の機能に特化していた、②運動方向や奥行に対する選択性が等しいニューロンがコラム状の狭い領域に集中しており、それらの操作が容易であった、③結果的に知覚判断が比較的小数のニューロンの活動に依存していたことが、因果関係を検証する際の利点となったと考えられる。 | ||
運動からの構造の知覚(structure from | 運動からの構造の知覚(structure from motion)<ref><pubmed>9565031</pubmed></ref> 垂直に立てた透明な円筒を回転させた時に生じる円筒表面のドットパターンの各点が示す左右の動きを平面なスクリーンに呈示すると、回転する立体の円筒が知覚される。この時、両眼視差の情報がないので円筒の前面の点が左右どちら方向に動くかは画像からは分からず、知覚される見かけの回転方向は不定期に変化する。知覚される円筒の回転方向の変化に合わせて反応強度が変化するニューロンがV5/MTで見つかった。 | ||
ドットパターンの運動方向や奥行きの知覚<ref><pubmed>1464765</pubmed></ref><ref><pubmed>1607944</pubmed></ref><ref><pubmed>3385495</pubmed></ref> 各点がランダムに動くドットパターンの中で一定の割合の点が同じ方向に運動する時、その割合(コヒーレンス)が高い程、それらの点が示す運動方向が知覚されやすくなる。コヒーレンスが高いほど運動方向を識別する課題の正答率が高くなることから、正答率により運動の見えを評価できる。記録中のV5/MTニューロンの最適な運動方向あるいはその反対方向へ動く点を含むドット刺激を用い、サルに強制選択課題で2方向から選択させたところ、①コヒーレンスの度合いによりニューロンの反応強度が変化した、②ニューロンの反応強度から運動方向の見えを確率的に推測できた、③V5/MTを局所的に破壊、麻痺、電気刺激してサルの正答率を操作できた、④曖昧な刺激(コヒーレンスなし)に対する知覚判断の試行ごとの変動がニューロンの反応の変動と相関していた(choice-probability)、⑤これらの対応や変調が知覚判断の表示法(視線の移動、手によるレバー押し)によらなかった。これらの結果から、比較的少数のV5/MTニューロンの活動が運動方向の知覚判断を左右することが示された。 | |||
==視覚情報処理のメカニズム== | ==視覚情報処理のメカニズム== | ||
91行目: | 91行目: | ||
18野の一部。V1に隣接する帯状の領域。背側部が反対側の下視野を、腹側部が反対側の上視野を表す。V1の主な出力先である。V1から主な入力を受け、V1 へ強いフィードバック投射する。V3、V4、V5/MTへ出力する。V1以外にMT、V4からのフィードバック入力および視床枕(pulvinar)から入力を受ける。 | 18野の一部。V1に隣接する帯状の領域。背側部が反対側の下視野を、腹側部が反対側の上視野を表す。V1の主な出力先である。V1から主な入力を受け、V1 へ強いフィードバック投射する。V3、V4、V5/MTへ出力する。V1以外にMT、V4からのフィードバック入力および視床枕(pulvinar)から入力を受ける。 | ||
チトクローム酸化酵素(CO)により染色すると、太い縞(thick stripe)、細い縞(thin stripe)、淡い縞(inter stripe、pale stripe)の縞状の領域(COストライプ)に区分され、外側から内側へ淡―太―淡―細と縞領域が繰り返し分布する<ref><pubmed>7751939</pubmed></ref><ref><pubmed>12385630</pubmed></ref><ref><pubmed>12385631</pubmed></ref>。太い縞はV1(4b層)より大細胞系の入力を受け、V3、MTに投射するので、背側視覚路に属するとされている。太い縞のニューロンは運動方向、速度、両眼視差に選択性を示す。細い縞はV1(ブロブ)より入力を受けV4に投射するので、腹側視覚路に属するとされている。細い縞のニューロンは色相に選択性を示す。淡い縞はV1(2/ | チトクローム酸化酵素(CO)により染色すると、太い縞(thick stripe)、細い縞(thin stripe)、淡い縞(inter stripe、pale stripe)の縞状の領域(COストライプ)に区分され、外側から内側へ淡―太―淡―細と縞領域が繰り返し分布する<ref><pubmed>7751939</pubmed></ref><ref><pubmed>12385630</pubmed></ref><ref><pubmed>12385631</pubmed></ref>。太い縞はV1(4b層)より大細胞系の入力を受け、V3、MTに投射するので、背側視覚路に属するとされている。太い縞のニューロンは運動方向、速度、両眼視差に選択性を示す。細い縞はV1(ブロブ)より入力を受けV4に投射するので、腹側視覚路に属するとされている。細い縞のニューロンは色相に選択性を示す。淡い縞はV1(2/3層のブロブ間)より小細胞系の入力を受け、V4に投射するので、腹側視覚路に属するとされている。淡い縞のニューロンは線の傾きに選択に反応し、エンドストップ抑制により端点を表す。Livingston以降、V2が3つの視覚経路(太い縞、細い縞、淡い縞)に分かれており、それぞれが色、形、運動の情報処理を分担するとされてきた。Sincichら<ref><pubmed>16022598</pubmed></ref>よれば①細い縞はV1の2/3層のブロブ以外に4a, 4b, 5/6層からも入力を受け、②太い縞と淡い縞は2/3層のブロブ間と4a,4b,5/6層から入力を受けて、線の傾きに選択性を示し、③太い縞と淡い縞の違いは出力先(V4、V5/MT)の違いであるという。また、太い縞の外側に隣接する淡い縞にはV1(4b層)からの入力があり太い縞と似た反応を示し、太い縞の内側に隣接する淡い縞と区別されることが示された<ref><pubmed>23843523</pubmed></ref>。Sincichらは各縞が受け取る情報の差はそれほど明瞭でなく、V1のブロブとブロブ間に発する2つの経路に大別されるとしている。 | ||
V2のニューロンはV1のニューロンよりも概して低い空間周波数成分によく反応する。大局的な情報(主観的輪郭線の傾き、輪郭線を挟んだ図と地の向き、逆相関ステレオグラム)、ドットパターンの面の奥行き段差が示す境界線の傾き<ref name=refb />、受容野を横切る輪郭線の折れ曲がり<ref><pubmed>10684908</pubmed></ref><ref><pubmed>15056711</pubmed></ref>、傾きや周波数成分の異なる縞模様の組み合わせ<ref><pubmed>20147538</pubmed></ref>に選択性を示すニューロンがある。 | V2のニューロンはV1のニューロンよりも概して低い空間周波数成分によく反応する。大局的な情報(主観的輪郭線の傾き、輪郭線を挟んだ図と地の向き、逆相関ステレオグラム)、ドットパターンの面の奥行き段差が示す境界線の傾き<ref name=refb />、受容野を横切る輪郭線の折れ曲がり<ref><pubmed>10684908</pubmed></ref><ref><pubmed>15056711</pubmed></ref>、傾きや周波数成分の異なる縞模様の組み合わせ<ref><pubmed>20147538</pubmed></ref>に選択性を示すニューロンがある。 | ||
107行目: | 107行目: | ||
19野の一部。V3に隣接する領域。背側部(V4d)と腹側部(V4v)を合わせて一つのV4とする。背側部は上視野の垂直子午線に近い部分を表す。腹側部は上視野の水平子午線に近い部分を含む残りの視野を表す。新世界ザルの背外側野(DL)、マーモセットのVLAに相当する。V2(細い縞、淡い縞)、V3、V3Aから強い入力を受け、側頭葉(TEO、TE)、後頭頂葉(MT、MST、FST、V4t、DP、VIP、LIP、PIP)、前頭葉(FEF)へ出力する。V1、V2、V3にフィードバック投射を返す。V2からの投射は中心視領域で強く、中心視領域はV1からも直接の投射を受ける。周辺視領域はV3、V5/MTから強い入力を受け、後頭頂葉からも広く入力を受ける。 | 19野の一部。V3に隣接する領域。背側部(V4d)と腹側部(V4v)を合わせて一つのV4とする。背側部は上視野の垂直子午線に近い部分を表す。腹側部は上視野の水平子午線に近い部分を含む残りの視野を表す。新世界ザルの背外側野(DL)、マーモセットのVLAに相当する。V2(細い縞、淡い縞)、V3、V3Aから強い入力を受け、側頭葉(TEO、TE)、後頭頂葉(MT、MST、FST、V4t、DP、VIP、LIP、PIP)、前頭葉(FEF)へ出力する。V1、V2、V3にフィードバック投射を返す。V2からの投射は中心視領域で強く、中心視領域はV1からも直接の投射を受ける。周辺視領域はV3、V5/MTから強い入力を受け、後頭頂葉からも広く入力を受ける。 | ||
1970年代には、色に選択的なニューロンが多く、その一部が色恒常性を示すことから、V4が色表現の中枢であるとする説が提案された<ref name=ref7 /><ref><pubmed>4196224</pubmed></ref>。しかし、1980年代になると輪郭線の傾きに選択性を示すニューロンも多数あることが明らかにされた<ref><pubmed>418173</pubmed></ref><ref name=ref6 /><ref><pubmed>3803497</pubmed></ref>。近年、色と形のサブ領域(グロブ)に分かれることが示されている<ref><pubmed>21076422</pubmed></ref><ref><pubmed>17988638</pubmed></ref>。曲線の曲率と傾きの組み合わせ<ref><pubmed>10561421</pubmed></ref><ref name=ref2 />、縞模様の空間周波数成分と傾きの組み合わせ、輪郭線の形状に複雑な応答特性を示すニューロンもある。3次元方向の線の傾き<ref><pubmed>15987762</pubmed></ref>、受容野内外の相対的な奥行き(relative disparity)<ref><pubmed>3559704</pubmed></ref> | 1970年代には、色に選択的なニューロンが多く、その一部が色恒常性を示すことから、V4が色表現の中枢であるとする説が提案された<ref name=ref7 /><ref><pubmed>4196224</pubmed></ref>。しかし、1980年代になると輪郭線の傾きに選択性を示すニューロンも多数あることが明らかにされた<ref><pubmed>418173</pubmed></ref><ref name=ref6 /><ref><pubmed>3803497</pubmed></ref>。近年、色と形のサブ領域(グロブ)に分かれることが示されている<ref><pubmed>21076422</pubmed></ref><ref><pubmed>17988638</pubmed></ref>。曲線の曲率と傾きの組み合わせ<ref><pubmed>10561421</pubmed></ref><ref name=ref2 />、縞模様の空間周波数成分と傾きの組み合わせ、輪郭線の形状に複雑な応答特性を示すニューロンもある。3次元方向の線の傾き<ref><pubmed>15987762</pubmed></ref>、受容野内外の相対的な奥行き(relative disparity)<ref><pubmed>3559704</pubmed></ref>、ドットパターンの印影方向、自然画像に含まれる高次の統計量成分に選択的に反応するニューロンもある<ref><pubmed>11404436</pubmed></ref><ref><pubmed>21841776</pubmed></ref><ref><pubmed>25535362</pubmed></ref><ref><pubmed>23685719</pubmed>。大局的な選択性(色恒常性、逆相関ステレオグラム)を示すニューロンもある。注意により強い修飾作用を受ける。 | ||
サルのV4を破壊すると、①大きさの変化、遮蔽、色恒常性、主観的輪郭線に対応できなくなる、②混在している複数の刺激要素を区別することができなくなる、③同一物体の持つ奥行き,明暗,色,位置などの情報を同一物体のものとして関連付けることができなくなる<ref><pubmed>8466667</pubmed></ref><ref><pubmed>8338809</pubmed></ref><ref><pubmed>8782380</pubmed></ref><ref><pubmed>10412066</pubmed></ref>などの影響が生じる。 | サルのV4を破壊すると、①大きさの変化、遮蔽、色恒常性、主観的輪郭線に対応できなくなる、②混在している複数の刺激要素を区別することができなくなる、③同一物体の持つ奥行き,明暗,色,位置などの情報を同一物体のものとして関連付けることができなくなる<ref><pubmed>8466667</pubmed></ref><ref><pubmed>8338809</pubmed></ref><ref><pubmed>8782380</pubmed></ref><ref><pubmed>10412066</pubmed></ref>などの影響が生じる。 | ||
117行目: | 117行目: | ||
19野の一部。視覚刺激の運動方向に選択性をもつニューロンが多数ある領域(V5)とミエリン染色で濃く染まる領域(MT、middle temporal area)として別々に同定されたが、後に同じ領域であることが明かにされた<ref><pubmed>4998922</pubmed></ref><ref name=ref5><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>やCat301抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、MT complex、hMT、MT+、V5/MTと呼ばれることが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。上視野と下視野をあわせた視野地図を持つ。背側視覚路に属し、主にV1(4b層)より、他にV2(太い縞)、V1(6層)、V3背側部、V4、V6から入力を受ける<ref name=ref4 /><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は脳梁膨大後部皮質からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST、FST、V4tへ、他に前頭眼野(FEF)、頭頂間溝(LIP、VIP)、上丘(SC)へ投射する。また、外側膝状体、視床枕からの直接の投射がある<ref><pubmed>15378066</pubmed></ref>([[盲視]]を参照)。 | 19野の一部。視覚刺激の運動方向に選択性をもつニューロンが多数ある領域(V5)とミエリン染色で濃く染まる領域(MT、middle temporal area)として別々に同定されたが、後に同じ領域であることが明かにされた<ref><pubmed>4998922</pubmed></ref><ref name=ref5><pubmed>5002708</pubmed></ref>。チトクローム酸化酵素<ref><pubmed>7719129</pubmed></ref>やCat301抗体<ref><pubmed>1702988</pubmed></ref>で濃く染まる。ヒトでは、隣接する領域(MST等)と合わせて、MT complex、hMT、MT+、V5/MTと呼ばれることが多い<ref><pubmed>7722658</pubmed></ref><ref><pubmed>8490322</pubmed></ref>。上視野と下視野をあわせた視野地図を持つ。背側視覚路に属し、主にV1(4b層)より、他にV2(太い縞)、V1(6層)、V3背側部、V4、V6から入力を受ける<ref name=ref4 /><ref><pubmed>3722458</pubmed></ref>。周辺視の領域は脳梁膨大後部皮質からも入力を受ける<ref><pubmed>17042793</pubmed></ref>。主に隣接するMST、FST、V4tへ、他に前頭眼野(FEF)、頭頂間溝(LIP、VIP)、上丘(SC)へ投射する。また、外側膝状体、視床枕からの直接の投射がある<ref><pubmed>15378066</pubmed></ref>([[盲視]]を参照)。 | ||
大部分(70-85%)のニューロンが視覚刺激の運動方向、速度、両眼視差に選択性を示しし<ref name=ref5/><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref name=ref8><pubmed>6520628</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。注視面からの絶対視差(absolute disparity)に選択性を示し、奥行きの異なる面を区別する。運動視差(奥行きの違いにより生じる見かけの運動速度や運動方向の違い)に選択性を示すニューロン、ドットパターンの運動方向の違いにより示される境界線に選択性を示すニューロンもある。両眼視差による奥行き表現と運動視差による奥行き表現は、サルではV5/ | 大部分(70-85%)のニューロンが視覚刺激の運動方向、速度、両眼視差に選択性を示しし<ref name=ref5/><ref><pubmed>6864242</pubmed></ref><ref><pubmed>6481441</pubmed></ref>、運動方向と両眼視差の機能的コラム(V1を参照)が存在する<ref><pubmed>6693933</pubmed></ref><ref name=ref8><pubmed>6520628</pubmed></ref><ref><pubmed>9952417</pubmed></ref>。注視面からの絶対視差(absolute disparity)に選択性を示し、奥行きの異なる面を区別する。運動視差(奥行きの違いにより生じる見かけの運動速度や運動方向の違い)に選択性を示すニューロン、ドットパターンの運動方向の違いにより示される境界線に選択性を示すニューロンもある。両眼視差による奥行き表現と運動視差による奥行き表現は、サルではV5/MTで、ヒトではV3Bで統合される<ref><pubmed>30925163</pubmed></ref>。注意により強い修飾を受ける。 | ||
サルのV5/MTが運動知覚の中枢として機能することが示されている(知覚の神経メカニズムの項を参照)。ヒトのV5/MTが損傷されると、刺激刺激の運動に追従して生じる眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>(詳細は視覚失認、皮質盲を参照)。V5/MTに経頭蓋磁気刺激を与えると視覚刺激の運動の知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。一方、3次元的な位置の知覚の阻害は後頭頂葉の損傷により生じる。 | サルのV5/MTが運動知覚の中枢として機能することが示されている(知覚の神経メカニズムの項を参照)。ヒトのV5/MTが損傷されると、刺激刺激の運動に追従して生じる眼球運動が障害され、運動を知覚できずに世界が静的な"フレーム"の連続に感じられる<ref><pubmed>6850272</pubmed></ref><ref><pubmed>2723744</pubmed></ref><ref><pubmed>1992012</pubmed></ref>(詳細は視覚失認、皮質盲を参照)。V5/MTに経頭蓋磁気刺激を与えると視覚刺激の運動の知覚が阻害される<ref><pubmed>9569672</pubmed></ref>。一方、3次元的な位置の知覚の阻害は後頭頂葉の損傷により生じる。 | ||
===V6野=== | ===V6野=== | ||
19野の一部。頭頂後頭溝(parieto-occipital sulcus)前壁に位置し、V2、V3に隣接する、上視野と下視野をあわせた視野地図を持つ領域。PO野<ref><pubmed>8713448</pubmed></ref><ref><pubmed>10583481</pubmed></ref><ref><pubmed>9786211</pubmed></ref> | 19野の一部。頭頂後頭溝(parieto-occipital sulcus)前壁に位置し、V2、V3に隣接する、上視野と下視野をあわせた視野地図を持つ領域。PO野<ref><pubmed>8176003</pubmed></ref><ref><pubmed>15787702</pubmed></ref>とも呼ばれる。頭頂後頭溝前壁の腹側部分の視覚領域(V6野)と背側部分の視覚―運動領域(V6A野)に区別される<ref><pubmed>8713448</pubmed></ref><ref><pubmed>10583481</pubmed></ref><ref><pubmed>9786211</pubmed></ref>。ミエリン染色で濃く染まる<ref><pubmed>15678474</pubmed></ref>]。新世界ザルでは背内側野(DM)の一部が相当する。当初はヒトや旧世界ザル(マカカ属サル)には存在しないとされた。ヒトのV6は頭頂後頭溝の最背側部に位置する<ref><pubmed>16870741</pubmed></ref>。後頭葉(V1、V2、V3、V3A)と後頭頂葉(V5/MT、V6A)とに約半分ずつの割合で、双方向に投射する<ref><pubmed>11328351</pubmed></ref>。背側皮質視覚路に属するとされる。さらに頭頂間溝(MIP、LIP)へも投射する。他の領野と異なり、周辺視野に移っても領野内の占有面積の割合は変わらない。エンドストップ抑制が弱く、低空間周波数成分に反応する。大きなエッジの運動方向に選択性を示す。目や頭部の動きにより生じる見かけの運動刺激に反応しないニューロンがあり、real-motion detectorとも呼ばれ<ref><pubmed>14527536</pubmed></ref>、身体座標による運動検出に関わるとされる。ヒトのV6野は大きなドットパターンやフリッカー刺激に反応する<ref><pubmed>16870741</pubmed></ref><ref><pubmed>19502476</pubmed></ref>。ヒトのV6を含む部位が損傷されると、運動方向の区別あるいは運動自体の検出が阻害される<ref><pubmed>12911768</pubmed></ref>。 | ||
==関連項目== | ==関連項目== |
回編集