「ニューロンモデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
7行目: 7行目:
</div>
</div>


英:neuronal model
英:model of neurons, neuron model
{{box|text= 計測により得られた神経細胞や神経回路の挙動の背後にある原理を理解するには、数理的な記述が不可欠である。ニューロンモデルは、神経細胞の状態の変化を数理的に記述したモデルである。モデル化の対象とすべき現象や方針の違いにより、さまざまなモデルが提案されている。こうしたニューロンモデルを用いることにより、ニューロン、および、神経回路が実現しうる機能やその仕組みに関する構成論的理解を目指す研究にも用いられる。}}
{{box|text= 計測により得られた神経細胞や神経回路の挙動の背後にある原理を理解するには、数理的な記述が不可欠である。ニューロンモデルは、神経細胞の状態の変化を数理的に記述したモデルである。モデル化の対象とすべき現象や方針の違いにより、さまざまなモデルが提案されている。こうしたニューロンモデルを用いることにより、ニューロン、および、神経回路が実現しうる機能やその仕組みに関する構成論的理解を目指す研究にも用いられる。}}


64行目: 64行目:
 イオンチャネルを透過する膜電流を考慮するとなると、そのアクティブな特性のため、ケーブル方程式の形では数値的にも扱いが困難である。そこで、空間方向を離散化することにより、方程式の解法の問題を回避する。ケーブル状の突起を区画(コンパートメント)に分割することで、1つの区画を長さ<math>L</math>、半径<math>a</math>の円柱として近似する。1つの区画の範囲内は等電位であるとみなし、各区画の膜電位に対し、膜電位ダイナミクスを与える。加えて、隣接する区画間に電位勾配があれば、一方の区画から他方へ電流が生じるので、この軸方向の電流を考慮する必要がある。<math>k</math>番目の区画に対する膜電位ダイナミクスは、
 イオンチャネルを透過する膜電流を考慮するとなると、そのアクティブな特性のため、ケーブル方程式の形では数値的にも扱いが困難である。そこで、空間方向を離散化することにより、方程式の解法の問題を回避する。ケーブル状の突起を区画(コンパートメント)に分割することで、1つの区画を長さ<math>L</math>、半径<math>a</math>の円柱として近似する。1つの区画の範囲内は等電位であるとみなし、各区画の膜電位に対し、膜電位ダイナミクスを与える。加えて、隣接する区画間に電位勾配があれば、一方の区画から他方へ電流が生じるので、この軸方向の電流を考慮する必要がある。<math>k</math>番目の区画に対する膜電位ダイナミクスは、
::<math>
::<math>
C_m\frac{dV_k}{dt}=-I_m^k+I_{app}^k+g_{k,k+1}(V_{K+1}-V_K)+g_{k,k-1}(V_{K-1}-V_K)
C_m\frac{dV_k}{dt}=-I_m^k+I_{app}^k+g_{k,k+1}(V_{k+1}-V_k)+g_{k,k-1}(V_{k-1}-V_k)
</math>
</math>


98行目: 98行目:
を定める。<math>\theta(t)</math>はスパイク閾値を表し、一般的に時間に依存するとしている。時間<math>t</math>から<math>t+\Delta{t}</math>におけるスパイク発生確率を<math>P(t, \Delta{t})</math>とすると<br><br>
を定める。<math>\theta(t)</math>はスパイク閾値を表し、一般的に時間に依存するとしている。時間<math>t</math>から<math>t+\Delta{t}</math>におけるスパイク発生確率を<math>P(t, \Delta{t})</math>とすると<br><br>
::<math>
::<math>
R(t,\Delta{t})=r{t}\delta{t}=f(V(t)-\theta{(t)})
R(t,\Delta{t})=r{t}\Delta{t}=f(V(t)-\theta{(t)})
</math><br><br>
</math><br><br>
によりスパイクを確率的に生成する<ref name=Gerstner2008>'''Gerstner, W. (2008)'''<br>Spike-response model" Scholarpedia, 3, 1343 ( http://www.scholarpedia.org/article/Spike-response_model).</ref>。関数<math>f(x)</math>はescape rateと呼ばれ、[[指数関数]]や[[正規化線形関数]]が用いられることが多い<ref name=Gerstner2014 />。
によりスパイクを確率的に生成する<ref name=Gerstner2008>'''Gerstner, W. (2008)'''<br>Spike-response model" Scholarpedia, 3, 1343 ( http://www.scholarpedia.org/article/Spike-response_model).</ref>。関数<math>f(x)</math>はescape rateと呼ばれ、[[指数関数]]や[[正規化線形関数]]が用いられることが多い<ref name=Gerstner2014 />。
107行目: 107行目:
 ある統制された条件の下、ある試行におけるニューロンの応答は、
 ある統制された条件の下、ある試行におけるニューロンの応答は、
::<math>
::<math>
\rho{(t)}=\sum_{k=1}^k\delta(t-t_{spa}^k)
\rho{(t)}=\sum_{k=1}^k\delta(t-t_{spk}^k)
</math>
</math>


案内メニュー