「積分発火モデル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
12行目: 12行目:


==はじめに==
==はじめに==
 神経細胞の電気的特性については、[[wj:アラン・ロイド・ホジキン|Hodgkin]]と[[wj:アンドリュー・フィールディング・ハクスリー|Huxley]]によって[[細胞膜]]上に発現している[[イオンチャネル]]の[[膜電位]]依存性とそれらによる[[活動電位]]生成機構、およびその数理的な表現が明らかにされたが <ref name=Hodgkin1952><pubmed>12991237</pubmed></ref>、それ以前にLapicqueによって、細胞膜の[[キャパシタ]]としての特性や神経興奮現象(活動電位生成)に対する閾値となる電位、および、閾値に到るまでの過程について詳細に調べられていた<ref name=Lapicque1907>'''Lapicque, L. (1907).'''<br>Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization. Journal de physiologie et de pathologie générale, 9, 620-635.</ref><ref name=Lapicque2007><pubmed>18046573</pubmed></ref>。[[脂質二重層]]からなる神経細胞の細胞膜により、電荷をもつイオンは細胞膜からの流出入を妨げてられている。細胞外の電位を基準電位 (0 mV) とした場合、細胞内の電位を表す膜電位は、通常、負の値をもつ[[過分極]]した状態(およそ–70 mV付近)をとる。神経細胞は、細胞膜の外側と内側にそれぞれ正の電荷および負の電荷をもつイオンを帯電させた状態になり、細胞膜はキャパシタの性質を有する。
 神経細胞の電気的特性については、[[wj:アラン・ロイド・ホジキン|Hodgkin]]と[[wj:アンドリュー・フィールディング・ハクスリー|Huxley]]によって[[細胞膜]]上に発現している[[イオンチャネル]]の[[膜電位]]依存性とそれらによる[[活動電位]]生成機構、およびその数理的な表現が明らかにされたが <ref name=Hodgkin1952><pubmed>12991237</pubmed></ref>、それ以前にLapicqueによって、細胞膜の[[キャパシタ]]としての特性や神経興奮現象(活動電位生成)に対する閾値となる電位、および、閾値に到るまでの過程について詳細に調べられていた<ref name=Lapicque1907>'''Lapicque, L. (1907).'''<br>Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization. Journal de physiologie et de pathologie générale, 9, 620-635.</ref><ref name=Lapicque2007><pubmed>18046573</pubmed></ref>。[[脂質二重層]]からなる神経細胞の細胞膜により、電荷をもつイオンは細胞膜からの流出入を妨げてられている。細胞外の電位を基準電位 (0 mV) とした場合、細胞内の電位を表す膜電位は、通常、負の値をもつ[[分極]]した状態(およそ–70 mV付近)をとる。神経細胞は、細胞膜の外側と内側にそれぞれ正の電荷および負の電荷をもつイオンを帯電させた状態になり、細胞膜はキャパシタの性質を有する。


 入力として与えられた電流はこの細胞膜のキャパシタとしての特性により膜電位に積算(integrate)される。膜電位が上昇して閾値に到達すると、活動電位を発生(fire)する。この膜電位の閾値に達するまでの積算過程をモデル化したのが、積分発火モデルである。このモデルでは活動電位生成中の膜電位変動は記述しない。それは非常に短時間(< 2msec)の過程であり、膜電位挙動のほとんどの時間が閾値に到るまでの積算過程であるとみなせるためである。神経細胞の状態を表す変数が膜電位のみの1変数であるため、計算量も多くない。このため、多くの研究において、採用されてきたモデルである。
 入力として与えられた電流はこの細胞膜のキャパシタとしての特性により膜電位に積算(integrate)される。膜電位が上昇して閾値に到達すると、活動電位を発生(fire)する。この膜電位の閾値に達するまでの積算過程をモデル化したのが、積分発火モデルである。このモデルでは活動電位生成中の膜電位変動は記述しない。それは非常に短時間(< 2msec)の過程であり、膜電位挙動のほとんどの時間が閾値に到るまでの積算過程であるとみなせるためである。神経細胞の状態を表す変数が膜電位のみの1変数であるため、計算量も多くない。このため、多くの研究において、採用されてきたモデルである。
34行目: 34行目:
のように書ける。
のように書ける。


 膜電流<math>I_m</math>は、細胞膜上に発現するイオンチャネルを透過する電流を表す。イオンチャネルは、典型的には10種類程度発現し、それぞれ異なる特性を有する。各イオンチャネルを透過する電流のコンダクタンス(あるいは、その逆数の抵抗)は、膜電位に依存して変化するアクティブな性質をもち、この性質によりパルス状の膜電位変化である活動電位が生成される。しかし、活動電位は、膜電位が[[閾値]]と呼ばれるレベルまで上昇すると、そこからさらに急速に上昇して正の電位に到達後、急速に下降して閾値以下の過分極したレベルまで戻る(リセットと呼ぶ)という定型の変化を示すことから、活動電位生成中の変化は省略し、リセット後から閾値到達までの変化のみを定式化する。膜電流としては、アクティブな伝導性を無視し、伝導性の時間に不変な成分を括り出した[[リーク電流]]のみを採用する。リーク電流は、時間に不変なコンダクタンスを<math>G_L</math>、この電流の[[反転電位]]を<math>E_L</math>とすると、
 膜電流<math>I_m</math>は、細胞膜上に発現するイオンチャネルを透過する電流を表す。イオンチャネルは、典型的には10種類程度発現し、それぞれ異なる特性を有する。各イオンチャネルを透過する電流のコンダクタンス(あるいは、その逆数の抵抗)は、膜電位に依存して変化するアクティブな性質をもち、この性質によりパルス状の膜電位変化である活動電位が生成される。しかし、活動電位は、膜電位が[[閾値]]と呼ばれるレベルまで上昇すると、そこからさらに急速に上昇して正の電位に到達後、急速に下降して閾値以下の分極したレベルまで戻る(リセットと呼ぶ)という定型の変化を示すことから、活動電位生成中の変化は省略し、リセット後から閾値到達までの変化のみを定式化する。膜電流としては、アクティブな伝導性を無視し、伝導性の時間に不変な成分を括り出した[[リーク電流]]のみを採用する。リーク電流は、時間に不変なコンダクタンスを<math>G_L</math>、この電流の[[反転電位]]を<math>E_L</math>とすると、


::<math>I_m=G_L(V-E_L)</math>
::<math>I_m=G_L(V-E_L)</math>
70行目: 70行目:
[https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>。
[https://doi.org/10.1007/3540532676_37 PDF]</ref><ref name=Jolivet2004><pubmed>15277599</pubmed></ref>。


 1つ目の拡張は、<math>F(V)</math>を2次関数<math>F(V)=\tfrac{G_L}{2\Delta_r}(V-V_r)^2</math>に拡張した[[Quadratic Integrate and Fireモデル|Quadratic Integrate and Fire (QIF) モデル]]である。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>。Quadratic Integrate and Fireモデルには限られたタイプの発火パターンしか再現できないという問題があった。そこで、IzhikevichはQuadratic Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Izhikevich2003><pubmed>18244602</pubmed><br>MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</ref>。
 1つ目の拡張は、<math>F(V)</math>を2次関数<math>F(V)=\tfrac{G_L}{2\Delta_r}(V-V_r)^2</math>に拡張した[[Quadratic Integrate and Fireモデル|Quadratic Integrate and Fire (QIF) モデル]]である。このモデルはサドルノード分岐を示す力学系の分岐点近傍の標準系 (Normal form) として得られたものである<ref name=Ermentrout1996><pubmed>8697231</pubmed></ref>。Quadratic Integrate and Fireモデルには限られたタイプの発火パターンしか再現できないという問題があった。そこで、IzhikevichはQuadratic Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した([[Izhikevichモデル]])<ref name=Izhikevich2003><pubmed>18244602</pubmed><br>MATLABコードが著者の [https://www.izhikevich.org/publications/spikes.htm ホームページ]にある。</ref>。


::<math>C_m\frac{dV}{dt}=0.04V^2+5V+140-U+I_{ext}\mbox{    }\cdots(5)</math>
::<math>C_m\frac{dV}{dt}=0.04V^2+5V+140-U+I_{ext}\mbox{    }\cdots(5)</math>

案内メニュー