16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
24行目: | 24行目: | ||
上に挙げた指標は、すべて因果性を仮定しない向きなしの統計的依存性の定量化に用いられる指標であるが、向きありの統計的依存性を定量化する際に用いられる代表的な因果性の定義としては[[グレンジャー因果性]]<ref name=Granger1969>'''Granger, C.W. (1969).'''<br>Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 37(3), 424-38. [https://doi.org/10.2307/1912791 PDF]</ref>が挙げられる。グレンジャー因果性の定義では、「AとBの過去の値を用いた場合のBの値の予測精度が、Bのみの過去の値を用いた場合のBの値の予測精度よりも高いとき、AはBの原因である(A causes B)」とされる。グレンジャー因果性を計算する際には、[[ベクトル自己回帰モデル]]によって[[多変量時系列]]がモデル化され、本モデルに基づいた統計量からグレンジャー因果性の評価に用いられるさまざまな定量化指標<ref name=Geweke1984>'''Geweke, J.F. (1984).'''<br>Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907-15.</ref> <ref name=Baccala2001><pubmed>11417058</pubmed></ref>が計算される。 | 上に挙げた指標は、すべて因果性を仮定しない向きなしの統計的依存性の定量化に用いられる指標であるが、向きありの統計的依存性を定量化する際に用いられる代表的な因果性の定義としては[[グレンジャー因果性]]<ref name=Granger1969>'''Granger, C.W. (1969).'''<br>Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, 37(3), 424-38. [https://doi.org/10.2307/1912791 PDF]</ref>が挙げられる。グレンジャー因果性の定義では、「AとBの過去の値を用いた場合のBの値の予測精度が、Bのみの過去の値を用いた場合のBの値の予測精度よりも高いとき、AはBの原因である(A causes B)」とされる。グレンジャー因果性を計算する際には、[[ベクトル自己回帰モデル]]によって[[多変量時系列]]がモデル化され、本モデルに基づいた統計量からグレンジャー因果性の評価に用いられるさまざまな定量化指標<ref name=Geweke1984>'''Geweke, J.F. (1984).'''<br>Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907-15.</ref> <ref name=Baccala2001><pubmed>11417058</pubmed></ref>が計算される。 | ||
グレンジャー因果性とは異なり[[ベクトル自己回帰モデル]]を仮定せずに、[[情報量]]ベースで向きありの統計的依存性を定量化する指標には[[移動エントロピー]]<ref name=Vicente2011><pubmed>20706781</pubmed></ref> | グレンジャー因果性とは異なり[[ベクトル自己回帰モデル]]を仮定せずに、[[情報量]]ベースで向きありの統計的依存性を定量化する指標には[[移動エントロピー]]<ref name=Vicente2011><pubmed>20706781</pubmed></ref>がある。なお、因果性を仮定した向きありの統計的依存性を定量化するこれらの指標は、後述する有効結合の推定値としてみなされる場合がある<ref name=Vicente2011 /><ref name=Friston2011><pubmed>22432952</pubmed></ref>。 | ||
その他、神経細胞の離散的な[[スパイク]]活動時系列に対しては、二時系列間の相互相関関数を用いて統計的依存性を定量化する方法が用いられている<ref name=Perkel1967><pubmed>4292792</pubmed></ref>。また、統計的依存性を直接定量化せずに、全活動時系列行列に対し独立成分分析を適用することによって同期的に活動が生じている脳領野を同定する方法も、特に安静時に取得された[[機能的磁気共鳴画像]]([[functional magnetic resonance imaging]]; [[fMRI]])データに対してよく用いられる<ref name=Damoiseaux2006><pubmed>16945915</pubmed></ref>。 | その他、神経細胞の離散的な[[スパイク]]活動時系列に対しては、二時系列間の相互相関関数を用いて統計的依存性を定量化する方法が用いられている<ref name=Perkel1967><pubmed>4292792</pubmed></ref>。また、統計的依存性を直接定量化せずに、全活動時系列行列に対し独立成分分析を適用することによって同期的に活動が生じている脳領野を同定する方法も、特に安静時に取得された[[機能的磁気共鳴画像]]([[functional magnetic resonance imaging]]; [[fMRI]])データに対してよく用いられる<ref name=Damoiseaux2006><pubmed>16945915</pubmed></ref>。 | ||
31行目: | 31行目: | ||
機能的結合と対となる用語としては[[構造的結合]](structural connectivity)がある。構造的結合は、巨視的スケールにおいては脳領野間の[[白質]]を介した解剖学的な接続性のことを指し<ref name=Hagmann2008><pubmed>18597554</pubmed></ref>、安静時における機能的結合と関連があることが知られている。 | 機能的結合と対となる用語としては[[構造的結合]](structural connectivity)がある。構造的結合は、巨視的スケールにおいては脳領野間の[[白質]]を介した解剖学的な接続性のことを指し<ref name=Hagmann2008><pubmed>18597554</pubmed></ref>、安静時における機能的結合と関連があることが知られている。 | ||
例えば、安静時fMRIデータから求められた機能的結合の強度と[[拡散磁気共鳴画像]]([[diffusion MRI]])データから求められた構造的結合の強度が正に相関すること<ref name=Honey2009><pubmed>19188601</pubmed></ref>、構造的結合に沿って神経細胞集団の活動ダイナミクスモデルを結合させた系から安静時機能的結合をシミュレートできること<ref name=Honey2009 /> | 例えば、安静時fMRIデータから求められた機能的結合の強度と[[拡散磁気共鳴画像]]([[diffusion MRI]])データから求められた構造的結合の強度が正に相関すること<ref name=Honey2009><pubmed>19188601</pubmed></ref>、構造的結合に沿って神経細胞集団の活動ダイナミクスモデルを結合させた系から安静時機能的結合をシミュレートできること<ref name=Honey2009 />、構造的結合から求められるネットワーク上のコミュニケーション指標が安静時機能的結合をよく再現できること<ref name=Goni2014><pubmed>24379387</pubmed></ref>、などがこれまでに示されている。 | ||
== 有効(または実効的)結合との関係 == | == 有効(または実効的)結合との関係 == |