「ヒストンメチル基転移酵素」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:


== 歴史・背景 ==
== 歴史・背景 ==
 1964年にmRNAへの転写はヒストンタンパク質のリジンのε-アミノ基のメチル化によって調節されることが見出された<ref name=Allfrey1964><pubmed>17836360</pubmed></ref>。しかし、[[w:Thomas Jenuwein|Thomas Jenuwein]]らにより、最初のヒストンリジンメチル基転移酵素 であるヒトおよびマウス SUV39H1 (suppressor of variegation 3-9 homolog1、KMT1Aとしても知られる) が同定、報告されたのは 2000年になってからのことであった。この酵素は、酵母からヒトまで進化的に保存されている<ref name=Rea2000><pubmed>10949293</pubmed></ref>。その後、ショウジョウバエの3つのタンパク質、Su(var)3-9、Enhancer of Zeste、Trithoraxが共通して持つSETドメインとのホモロジー検索により、多くのヒストンリジンメチル基転移酵素が同定された<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Jenuwein2006><pubmed>16857008</pubmed></ref>。一方、タンパク質アルギニンメチル基転移酵素に関しては、ヒストンタンパク質のアルギニン残基のメチル化が発見された1967年以降から現在までに哺乳類で9つが同定されている。
 1964年にゲノムDNAのmRNAへの転写はヒストンタンパク質のリジンのε-アミノ基のメチル化によって調節されることが見出された<ref name=Allfrey1964><pubmed>17836360</pubmed></ref>。しかし、[[w:Thomas Jenuwein|Thomas Jenuwein]]らにより、最初のヒストンリジンメチル基転移酵素であるヒトおよびマウス SUV39H1 (suppressor of variegation 3-9 homolog1、KMT1Aとしても知られる) が同定、報告されたのは 2000年になってからのことであった。この酵素は、酵母からヒトまで進化的に保存されている<ref name=Rea2000><pubmed>10949293</pubmed></ref>。その後、ショウジョウバエの3つのタンパク質、Su(var)3-9、Enhancer of Zeste、Trithoraxが共通して持つSETドメインとのホモロジー検索により、多くのヒストンリジンメチル基転移酵素が同定された<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Jenuwein2006><pubmed>16857008</pubmed></ref>。一方、タンパク質アルギニンメチル基転移酵素に関しては、ヒストンタンパク質のアルギニン残基のメチル化が発見された1967年以降から現在までに哺乳類で9つが同定されている。
 
これらヒストンメチル基転移酵素は各クラスの触媒ドメインは異なるものの、いずれもメチル基供与体として S-アデノシル-L-メチオニン (SAM/Adomet) を使用する<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Nguyen2011><pubmed>21724828</pubmed></ref>。
 
 


== 構造 ==
== 構造 ==
22行目: 18行目:
 ドメイン構造、標的分子となるヒストン残基とメチル化の数で分類される('''表1''')。
 ドメイン構造、標的分子となるヒストン残基とメチル化の数で分類される('''表1''')。
=== ヒストンリジンメチル基転移酵素 ===
=== ヒストンリジンメチル基転移酵素 ===
 2つのクラスから構成されているが、その1つであるSET ドメインを含むクラスが、ヒストンリジンメチル基転移酵素の大部分を占めている。ヒストンリジンメチル基転移酵素 のもう1つのクラスは、SET ドメインを持たないDOT1L(Dot1 like protein、KMT4としても知られる)の1種類だけである<ref name=Okada2005><pubmed>15851025</pubmed></ref><ref name=vanLeeuwen2002><pubmed>12086673</pubmed></ref>。
 2つのクラスから構成され、その1つであるSET ドメインを含むクラスが、大部分を占める。もう1つのクラスは、SET ドメインを持たないDOT1L(Dot1 like protein、KMT4としても知られる)の1種類だけである<ref name=Okada2005><pubmed>15851025</pubmed></ref><ref name=vanLeeuwen2002><pubmed>12086673</pubmed></ref>。


 ヒストンH3のリジン残基ではK4(4番目のリジン残基)、K9、K27、K36、K79が、アルギニン残基ではR2(2番目のアルギニン残基)、R8、R17、R26がメチル化され、ヒストンH4ではK20、R3がメチル化される。
=== タンパク質アルギニンメチル基転移酵素 ===
 
 メチル化機構の様式によりタイプI(PRMT1~4, 6, 8; PRMT4はCARM1とも呼ばれる)、タイプII(PRMT5, 9)、タイプIII(PRMT7)に分類される。タイプIとIIの タンパク質アルギニンメチル基転移酵素のみが、モノメチル化されたアルギニンをさらに二次メチル化する触媒作用を持ち、タイプIII タンパク質アルギニンメチル基転移酵素はモノメチル化活性のみが知られている<ref name=Hashimoto2021><pubmed>33127433</pubmed></ref>。タイプIとIIの違いは、タイプIは非対称型ジメチルアルギニン(ADMA)を形成し、タイプIIは対称型ジメチルアルギニン(SDMA)を形成する点である('''図2''')。タイプI タンパク質アルギニンメチル基転移酵素のうち,PRMT1は哺乳類において85%のADMAの生合成を担っている<ref name=Tang2000><pubmed>10713084</pubmed></ref>。
 リジン残基にはヒストンリジンメチル基転移酵素により1~3個のメチル基が、アルギニン残基ではタンパク質アルギニンメチル基転移酵素により1あるいは2個のメチル基が付加される。それぞれメチル化される残基の位置によって転写の活性化に関与するものと抑制に関与するものが存在しており、一般的にはH3K4、K36、K79、R17は転写活性化、H3K9、K27、H4K20は転写抑制に関与すると考えられている<ref name=DiNisio2021><pubmed>33859667</pubmed></ref><ref name=Park2022><pubmed>35794091</pubmed></ref><ref name=Bauer2002><pubmed>11751582</pubmed></ref>。
 
 また、タンパク質アルギニンメチル基転移酵素はメチル化機構の様式によりタイプI、タイプII、タイプIIIに分類される。(詳細は分子機能の項目に後述)


{| class="wikitable"
{| class="wikitable"
172行目: 165行目:
== 分子機能 ==
== 分子機能 ==
[[ファイル:Nakashima HMT Fig1.png|サムネイル|'''図1. ヒストンリジンメチル基転移酵素(KMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]]
[[ファイル:Nakashima HMT Fig1.png|サムネイル|'''図1. ヒストンリジンメチル基転移酵素(KMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]]
[[ファイル:Nakashima HMT Fig2.png|サムネイル|'''図2. タンパク質アルギニンメチル基転移酵素素(PRMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]]
[[ファイル:Nakashima HMT Fig2.png|サムネイル|'''図2. タンパク質アルギニンメチル基転移酵素素(PRMT)のメチル化機構'''<br>AdoMet: S-adenosyl-L-methionine、AdoHcy: S adenosyl-L-homocysteine。文献<ref name=Tsukada2007><pubmed>17763704</pubmed> [https://www.jbsoc.or.jp/seika/wp-content/uploads/2018/12/79-07-09.pdf PDF]</ref> より改変。]] 
===ヒストンリジンメチル基転移酵素===
 
リジンのメチル化を触媒する('''図1''')。モノ・ジ・トリメチル化のどの状態まで触媒するかは表1に示したようにそれぞれの特異性によって分かれている。
 ヒストンメチル基転移酵素は各クラスの触媒ドメインは異なるものの、いずれもメチル基供与体として S-アデノシル-L-メチオニン (SAM/Adomet) を使用する<ref name=Dillon2005><pubmed>16086857</pubmed></ref><ref name=Nguyen2011><pubmed>21724828</pubmed></ref>。リジン残基にはヒストンリジンメチル基転移酵素により1~3個のメチル基が、アルギニン残基ではタンパク質アルギニンメチル基転移酵素により1あるいは2個のメチル基が付加される。モノ・ジ・トリメチル化のどの状態まで触媒するかは表1に示したようにそれぞれの特異性によって分かれている。ヒストンH3のリジン残基ではK4(4番目のリジン残基)、K9、K27、K36、K79が、アルギニン残基ではR2(2番目のアルギニン残基)、R8、R17、R26がメチル化され、ヒストンH4ではK20、R3がメチル化される。
 
 それぞれメチル化される残基の位置によって転写の活性化に関与するものと抑制に関与するものが存在しており、一般的にはH3K4、K36、K79、R17は転写活性化、H3K9、K27、H4K20は転写抑制に関与すると考えられている<ref name=DiNisio2021><pubmed>33859667</pubmed></ref><ref name=Park2022><pubmed>35794091</pubmed></ref><ref name=Bauer2002><pubmed>11751582</pubmed></ref>。
 
('''図1''')


===タンパク質アルギニンメチル基転移酵素===
===タンパク質アルギニンメチル基転移酵素===
 メチル化の様式によってタイプI(PRMT1~4, 6, 8; PRMT4はCARM1とも呼ばれる)、タイプII(PRMT5, 9)、タイプIII(PRMT7)に分類される。タイプIとIIの タンパク質アルギニンメチル基転移酵素のみが、モノメチル化されたアルギニンをさらに二次メチル化する触媒作用を持ち、タイプIII タンパク質アルギニンメチル基転移酵素はモノメチル化活性のみが知られている<ref name=Hashimoto2021><pubmed>33127433</pubmed></ref>。タイプIとIIの違いは、タイプIのタンパク質アルギニンメチル基転移酵素は非対称型ジメチルアルギニン(ADMA)を形成し、タイプIIのタンパク質アルギニンメチル基転移酵素は対称型ジメチルアルギニン(SDMA)を形成する点である('''図2''')。タイプI タンパク質アルギニンメチル基転移酵素のうち,PRMT1は哺乳類において85%のADMAの生合成を担っている<ref name=Tang2000><pubmed>10713084</pubmed></ref>。
 


== 神経細胞での機能 ==
== 神経細胞での機能 ==

案内メニュー