「嗅覚受容体」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
 
(同じ利用者による、間の10版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/80292788 伊原 さよ子]、[https://researchmap.jp/touhara 東原 和成]</font><br>
<font size="+1">[http://researchmap.jp/80292788 伊原 さよ子]、[https://researchmap.jp/touhara 東原 和成]</font><br>
''東京大学大学院 農学生命科学研究科''<br>
''東京大学大学院 農学生命科学研究科''<br>
DOI:<selfdoi /> 原稿受付日:2023年11月10日 原稿完成日:2023年X月XX日<br>
DOI:<selfdoi /> 原稿受付日:2023年11月10日 原稿完成日:2023年11月21日<br>
担当編集委員:[http://researchmap.jp/read0192882 古屋敷 智之](神戸大学大学院医学研究科・医学部 薬理学分野)<br>
担当編集委員:[http://researchmap.jp/read0192882 古屋敷 智之](神戸大学大学院医学研究科・医学部 薬理学分野)<br>
</div>
</div>
9行目: 9行目:
英略称:OR
英略称:OR


{{box|text= 嗅覚受容体は、嗅覚器官に存在する嗅神経細胞に発現し、匂い物質との結合を引き金として神経細胞の興奮をもたらし、脳に信号を伝える。ほとんどの生物種において、嗅覚受容体遺伝子はスーパーファミリーを形成し、数多くの嗅覚受容体の存在が多様なシグナルの識別を可能としている。脊椎動物と昆虫では、嗅覚受容体の構造と分子機能が本質的に異なり、各々の生存環境、生活様式を反映していると考えられている。}}
{{box|text= 嗅覚受容体は、嗅覚器官に存在する嗅神経細胞に発現する一群のタンパク質である。匂い物質との結合を引き金として神経細胞の興奮をもたらし、脳に信号を伝える。ほとんどの生物種において、嗅覚受容体遺伝子はスーパーファミリーを形成し、数多くの嗅覚受容体の存在が多様なシグナルの識別を可能としている。脊椎動物と昆虫では、嗅覚受容体の構造と分子機能が本質的に異なり、各々の生存環境、生活様式を反映していると考えられている。}}


==嗅覚受容体とは==
==嗅覚受容体とは==
 生物は外界からの様々な刺激を感知し、適切に応答することで生存を維持している。様々な感覚のうち、[[嗅覚]]は[[化学物質]]を媒体として外界の情報を感知するシステムであり、食物や配偶者の探索、敵からの逃避、といった生存に必須な行動に重要な役割を果たす。極めて多様なシグナルを感度良く識別できるのが嗅覚システムの特徴であり、嗅覚受容体はその識別の出発点としての役目を果たす。
 生物は外界からの様々な刺激を感知し、適切に応答することで生存を維持している。様々な感覚のうち、[[嗅覚]]は[[化学物質]]を媒体として外界の情報を感知するシステムであり、食物や配偶者の探索、敵からの逃避、といった生存に必須な行動に重要な役割を果たす。極めて多様なシグナルを感度良く識別できるのが嗅覚システムの特徴であり、嗅覚受容体はその識別の出発点としての役目を果たす。


 日本語ではいずれも嗅覚受容体であるが、英語でolfactory receptorは、広義に嗅覚組織に発現している嗅覚受容体全般を指す一方、odorant receptorは狭義に揮発性匂い物質の受容体を指す。脊椎動物では通常olfactory receptorが用いられるが、昆虫では嗅覚受容体ファミリー名がodorant receptorと定められている。また、[[げっ歯類]]において、嗅覚受容体は広義に、[[鋤鼻器]]官に発現する”[[フェロモン受容体]]”も含める場合もあるが、本項目では含めない。[[フェロモン受容体]]の項目を参照。
 「嗅覚受容体」を指す言葉として、英語ではolfactory receptor、または、odorant receptorが用いられる。Olfactory receptorは、広義に嗅覚組織に発現している嗅覚受容体全般を指す一方、odorant receptorは狭義に揮発性匂い物質の受容体を指す。脊椎動物では通常olfactory receptorが用いられるが、昆虫では嗅覚受容体ファミリー名がodorant receptorと定められている。また、[[げっ歯類]]において、嗅覚受容体は広義に、[[鋤鼻器]]官に発現する”[[フェロモン受容体]]”も含める場合もあるが、本項目では含めない。[[フェロモン受容体]]の項目を参照。


== 脊椎動物 ==
== 脊椎動物 ==
=== 発見、歴史的経緯など ===
=== 発見、歴史的経緯など ===
 我々が匂いを感知する仕組みについては、古くから複数の学説が唱えられていたが、そのうちのひとつが、[[wj:ジョン・アムーア|Amoore]]による[[立体化学説]]であった。匂い分子の化学構造、形とサイズが[[鼻腔上皮]]の受容部位の構造に適合すると匂いが感知されるとの説である<ref name=Amoore1963><pubmed>14012641</pubmed></ref>。この学説で概念に過ぎなかった”[[受容体]]”の存在は、1991年、[[wj:リンダ・バック|Buck]]と[[wj:リチャード・アクセル|Axel]]による、[[ラット]]嗅覚受容体(遺伝子ファミリーの歴史的な発見により明らかとなった<ref name=Buck1991><pubmed>1840504</pubmed></ref>。
 我々が匂いを感知する仕組みについては、古くから複数の学説が唱えられていたが、そのうちのひとつが、[[wj:ジョン・アムーア|Amoore]]による[[立体化学説]]であった。匂い分子の化学構造、形とサイズが[[鼻腔上皮]]の受容部位の構造に適合すると匂いが感知されるとの説である<ref name=Amoore1963><pubmed>14012641</pubmed></ref>。この学説で概念に過ぎなかった”[[受容体]]”の存在は、1991年、[[wj:リンダ・バック|Buck]]と[[wj:リチャード・アクセル|Axel]]による、[[ラット]]嗅覚受容体遺伝子ファミリーの歴史的な発見により明らかとなった<ref name=Buck1991><pubmed>1840504</pubmed></ref>。


 その後、嗅覚受容体遺伝子によりコードされるタンパク質が匂い物質に応答し、[[嗅神経細胞]]の活性化をもたらすことが実証された<ref name=Touhara1999><pubmed>10097159</pubmed></ref><ref name=Zhao1998><pubmed>9422698</pubmed></ref>。嗅覚受容体遺伝子は脊椎動物全般において、最大の遺伝子ファミリーとして存在し、多重遺伝子ファミリーを形成するが、その数は生物種により大きく異なり、例えば[[マウス]]では約1100、[[ヒト]]では約400存在する<ref name=Niimura2014><pubmed>25053675</pubmed></ref>。嗅覚受容体遺伝子ファミリーは他の遺伝子ファミリーに比べると[[偽遺伝子]]の割合が高く、進化の過程での重複、欠失が多いことも特徴である。さらに、ヒト個人間においても数多くの[[遺伝子多型]]が存在し、特定の匂いへの知覚感度に影響する例も報告されている <ref name=Markt2022><pubmed> 35113854 </pubmed></ref><ref name=Niimura2020>'''Niimura Y, Ihara S, Touhara K (2020).'''<br>3.25 - Mammalian Olfactory and Vomeronasal Receptor Families. In The Senses: A Comprehensive Reference (Second Edition). Edited by Fritzsch B: Elsevier; pp 516-535.</ref><ref name=Sato-Akuhara2023><pubmed> 36625229 </pubmed></ref><ref name=Trimmer2019><pubmed> 31040214 </pubmed></ref>。
 その後、嗅覚受容体遺伝子によりコードされるタンパク質が匂い物質に応答し、[[嗅神経細胞]]の活性化をもたらすことが実証された<ref name=Touhara1999><pubmed>10097159</pubmed></ref><ref name=Zhao1998><pubmed>9422698</pubmed></ref>。嗅覚受容体遺伝子は脊椎動物全般において、最大の遺伝子ファミリーとして存在し、多重遺伝子ファミリーを形成するが、その数は生物種により大きく異なり、例えば[[マウス]]では約1100、[[ヒト]]では約400存在する<ref name=Niimura2014><pubmed>25053675</pubmed></ref>。嗅覚受容体遺伝子ファミリーは他の遺伝子ファミリーに比べると[[偽遺伝子]]の割合が高く、進化の過程での重複、欠失が多いことも特徴である。さらに、ヒト個人間においても数多くの[[遺伝子多型]]が存在し、特定の匂いへの知覚感度に影響する例も報告されている <ref name=Markt2022><pubmed> 35113854 </pubmed></ref><ref name=Niimura2020>'''Niimura Y, Ihara S, Touhara K (2020).'''<br>3.25 - Mammalian Olfactory and Vomeronasal Receptor Families. In The Senses: A Comprehensive Reference (Second Edition). Edited by Fritzsch B: Elsevier; pp 516-535.</ref><ref name=Sato-Akuhara2023><pubmed> 36625229 </pubmed></ref><ref name=Trimmer2019><pubmed> 31040214 </pubmed></ref>。


 嗅覚受容体に加え、2006年、[[嗅上皮]]で発現する[[微量アミン関連受容体]] ([[trace amine-associated receptor]], [[TAAR]])ファミリーも嗅覚受容体として機能することが報告された<ref name=Liberles2006><pubmed>16878137</pubmed></ref>。その後、げっ歯類嗅上皮で発現する[[グアニル酸シクラーゼ D]] ([[guanylyl cyclase D]], [[GCD]]) が呼気中の[[CO2|CO<sub>2</sub>]]、[[CS2|CS<sub>2</sub>]]の受容体としてはたらくことが示された<ref name=Hu2007><pubmed>17702944</pubmed></ref><ref name=Munger2010><pubmed>20637621</pubmed></ref>。
 前述の嗅覚受容体ファミリーに加え、2006年、[[嗅上皮]]で発現する[[微量アミン関連受容体]] ([[trace amine-associated receptor]], [[TAAR]])ファミリーも嗅覚受容体として機能することが報告された<ref name=Liberles2006><pubmed>16878137</pubmed></ref>。その後、げっ歯類嗅上皮で発現する[[グアニル酸シクラーゼ D]] ([[guanylyl cyclase D]], [[GCD]]) が呼気中の[[CO2|CO<sub>2</sub>]]、[[CS2|CS<sub>2</sub>]]の受容体としてはたらくことが示された<ref name=Hu2007><pubmed>17702944</pubmed></ref><ref name=Munger2010><pubmed>20637621</pubmed></ref>。


 さらに2016年、嗅上皮のくぼみに存在する嗅神経細胞に発現する嗅覚受容体として、[[membrane-spanning 4A receptor]] ([[MS4A]])が発見されている<ref name=Greer2016><pubmed>27238024</pubmed></ref>。
 さらに2016年、嗅上皮のくぼみに存在する嗅神経細胞に発現する嗅覚受容体として、[[membrane-spanning 4A receptor]] ([[MS4A]])が発見されている<ref name=Greer2016><pubmed>27238024</pubmed></ref>。
 
[[ファイル:Touhara Olfactory Receptor Fig1.png|サムネイル|350px|'''図1. 脊椎動物の嗅覚受容体'''<br>OR: 嗅覚受容体、TAAR: 微量アミン関連受容体、GC-D: グアニル酸シクラーゼD、MS4A: Membrane-spanning 4A receptor]]
=== 構造 ===
=== 構造 ===
 嗅覚受容体は[[Gタンパク質共役型受容体]]ファミリーのうち、[[ロドプシン]]ファミリーとよばれるサブファミリーに属し、ヘリックス構造から成る7回膜貫通構造を有する('''図1''')。全てのGタンパク質共役型受容体に共通な配列の他、3番目の膜貫通領域細胞質側のMAYDRYVAICモチーフをはじめ、嗅覚受容体を特徴づける複数の配列をもつ。
 嗅覚受容体は[[Gタンパク質共役型受容体]]ファミリーのうち、[[ロドプシン]]ファミリーとよばれるサブファミリーに属し、ヘリックス構造から成る7回膜貫通構造を有する('''図1''')。全てのGタンパク質共役型受容体に共通な配列の他、3番目の膜貫通領域細胞質側のMAYDRYVAICモチーフをはじめ、嗅覚受容体を特徴づける複数の配列をもつ。


 [[哺乳類]]嗅覚受容体は、アミノ酸配列の相同性からクラスI、クラスIIに分類され、哺乳類嗅覚受容体の約10~20%がクラスIである <ref name=Niimura2007><pubmed></pubmed></ref>。認識するリガンドが、クラスIは親水性、クラスIIは疎水性といった傾向を示す<ref name=Freitag1998><pubmed>9839455</pubmed></ref>。
 [[哺乳類]]嗅覚受容体は、アミノ酸配列の相同性からクラスI、クラスIIに分類され、哺乳類嗅覚受容体の約10~20%がクラスIである <ref name=Niimura2007><pubmed>17684554</pubmed></ref>。認識するリガンドが、クラスIは親水性、クラスIIは疎水性といった傾向を示す<ref name=Freitag1998><pubmed>9839455</pubmed></ref>。


 嗅覚受容体の立体構造については、2023年3月、脊椎動物で初めて[[クライオ電子顕微鏡]]による結果が報告された。嗅覚組織以外の様々な組織でも発現する嗅覚受容体のうち、クラスIに属する[[OR51E2]]について、匂い分子としてはやや例外的な親水性リガンド、[[プロピオン酸]]との結合状態を示したものであり<ref name=Billesbølle2023><pubmed>36922591</pubmed></ref>、画期的な進展であるが、疎水性匂い分子と嗅覚受容体の一般的な結合様式を反映しているかについては、今後の展開が待たれる。
 嗅覚受容体の立体構造については、2023年3月、脊椎動物で初めて[[クライオ電子顕微鏡]]による結果が報告された。嗅覚組織以外の様々な組織でも発現する嗅覚受容体のうち、クラスIに属する[[OR51E2]]について、匂い分子としてはやや例外的な親水性リガンド、[[プロピオン酸]]との結合状態を示したものであり<ref name=Billesbølle2023><pubmed>36922591</pubmed></ref>、画期的な進展であるが、疎水性匂い分子と嗅覚受容体の一般的な結合様式を反映しているかについては、今後の展開が待たれる。
35行目: 35行目:
 その他の嗅覚受容体については、構造が既知のGタンパク質共役型受容体の情報をもとにした、in silico解析、変異体解析により、匂い物質との相互作用モデルが複数例報告されており、いずれの場合もリガンド結合には、3, 5, 6番目の膜貫通領域のアミノ酸が重要とされている<ref name=Ahmed2018><pubmed>29632183</pubmed></ref><ref name=Bushdid2018><pubmed>29648835</pubmed></ref><ref name=Geithe2017><pubmed>28656349</pubmed></ref><ref name=Katada2005><pubmed>15716417</pubmed></ref>。
 その他の嗅覚受容体については、構造が既知のGタンパク質共役型受容体の情報をもとにした、in silico解析、変異体解析により、匂い物質との相互作用モデルが複数例報告されており、いずれの場合もリガンド結合には、3, 5, 6番目の膜貫通領域のアミノ酸が重要とされている<ref name=Ahmed2018><pubmed>29632183</pubmed></ref><ref name=Bushdid2018><pubmed>29648835</pubmed></ref><ref name=Geithe2017><pubmed>28656349</pubmed></ref><ref name=Katada2005><pubmed>15716417</pubmed></ref>。


 微量アミン関連受容体ファミリーもGタンパク質共役型受容体に分類され、ロドプシンファミリーに属するが、嗅覚受容体より[[モノアミン|生体アミン]]受容体に高い相同性を示す<ref name=Liberles2015><pubmed></pubmed></ref>。
 微量アミン関連受容体ファミリーもGタンパク質共役型受容体に分類され、ロドプシンファミリーに属するが、嗅覚受容体より[[モノアミン|生体アミン]]受容体に高い相同性を示す<ref name=Liberles2015><pubmed>25616211</pubmed></ref>。


 グアニル酸シクラーゼDは1回膜貫通型受容体であり、細胞外にリガンド結合領域を、細胞内に[[プロテインキナーゼ]]様ドメインを、C末端に触媒ドメインをもつ。
 グアニル酸シクラーゼDは1回膜貫通型受容体であり、細胞外にリガンド結合領域を、細胞内に[[プロテインキナーゼ]]様ドメインを、C末端に触媒ドメインをもつ。


 Membrane-spanning 4A receptorは4回膜貫通型タンパク質で、N末端、C末端をともに細胞質側に配置するトポロジーを示す<ref name=Greer2016><pubmed>27238024</pubmed></ref>('''図1''')。
 Membrane-spanning 4A receptorは4回膜貫通型タンパク質で、N末端、C末端をともに細胞質側に配置するトポロジーを示す<ref name=Greer2016><pubmed>27238024</pubmed></ref>('''図1''')。
   
 
=== 発現部位 ===
=== 発現部位 ===
 嗅覚受容体は、嗅上皮に存在する嗅神経細胞に発現する。嗅上皮は、ヒトの場合、鼻腔天井部の5 cm<sup>2</sup>程度の領域に存在し、嗅粘液層に覆われている。嗅神経細胞は嗅粘液層にむかって10本程度の線毛を伸ばしており、この上に発現する嗅覚受容体が嗅粘液層に溶け込んだ匂い物質を受容する。嗅覚受容体の発現様式には、1つの嗅神経細胞には1種類の受容体しか発現しない、「1神経細胞1受容体ルール」が存在する。同じ嗅覚受容体を発現する嗅神経細胞は嗅上皮上ではそれぞれ特定の領域に分布するが<ref name=RuizTejadaSegura2022><pubmed></pubmed></ref>、投射部位である脳の嗅球と呼ばれる領域では同じ部位に収束する。
 嗅覚受容体は、嗅上皮に存在する嗅神経細胞に発現する。嗅上皮は、ヒトの場合、鼻腔天井部の5 cm<sup>2</sup>程度の領域に存在し、嗅粘液層に覆われている。嗅神経細胞は嗅粘液層にむかって10本程度の線毛を伸ばしており、この上に発現する嗅覚受容体が嗅粘液層に溶け込んだ匂い物質を受容する。嗅覚受容体の発現様式には、1つの嗅神経細胞には1種類の受容体しか発現しない、「1神経細胞1受容体ルール」が存在する。同じ嗅覚受容体を発現する嗅神経細胞は嗅上皮上ではそれぞれ特定の領域に分布するが<ref name=RuizTejadaSegura2022><pubmed>35320714</pubmed></ref>、投射部位である脳の嗅球と呼ばれる領域では同じ部位に収束する。


 1991年嗅覚受容体遺伝子ファミリー発見当時、嗅覚受容体は嗅上皮に限定して発現すると考えられていたが、次第に多くの嗅覚受容体が[[精巣]]、[[腎臓]]、[[肺]]、[[筋]]、[[腸]]、といった他の様々な組織でも発現することが明らかになった。ヒトの場合、約400種類の嗅覚受容体のうち、約100種類が非嗅覚組織でも発現している<ref name=Flegel2013><pubmed>23405139</pubmed></ref>。非嗅覚組織で発現する嗅覚受容体は、[[精子]]の[[走化性]]<ref name=Fukuda2004><pubmed>15522887</pubmed></ref><ref name=Spehr2006><pubmed>16481428</pubmed></ref>、筋再生<ref name=Griffin2009><pubmed>19922870</pubmed></ref>、[[炎症]]反応<ref name=Orecchioni2022><pubmed>35025664</pubmed></ref>、[[エネルギー代謝調節]]<ref name=Cheng2022><pubmed>35108512</pubmed></ref><ref name=Li2019><pubmed>31230984</pubmed></ref><ref name=Wu2017><pubmed>28990936</pubmed></ref>といった様々な現象に関わることが示唆されており、創薬の標的としても着目され始めている<ref name=Lee2019><pubmed> 30504792 </pubmed></ref>。
 1991年嗅覚受容体遺伝子ファミリー発見当時、嗅覚受容体は嗅上皮に限定して発現すると考えられていたが、次第に多くの嗅覚受容体が[[精巣]]、[[腎臓]]、[[肺]]、[[筋]]、[[腸]]、といった他の様々な組織でも発現することが明らかになった。ヒトの場合、約400種類の嗅覚受容体のうち、約100種類が非嗅覚組織でも発現している<ref name=Flegel2013><pubmed>23405139</pubmed></ref>。非嗅覚組織で発現する嗅覚受容体は、[[精子]]の[[走化性]]<ref name=Fukuda2004><pubmed>15522887</pubmed></ref><ref name=Spehr2006><pubmed>16481428</pubmed></ref>、筋再生<ref name=Griffin2009><pubmed>19922870</pubmed></ref>、[[炎症]]反応<ref name=Orecchioni2022><pubmed>35025664</pubmed></ref>、[[エネルギー代謝調節]]<ref name=Cheng2022><pubmed>35108512</pubmed></ref><ref name=Li2019><pubmed>31230984</pubmed></ref><ref name=Wu2017><pubmed>28990936</pubmed></ref>といった様々な現象に関わることが示唆されており、創薬の標的としても着目され始めている<ref name=Lee2019><pubmed> 30504792 </pubmed></ref>。
51行目: 51行目:
 嗅覚受容体は、匂い物質がもつ化学情報を電気信号に変換し、神経細胞の興奮をもたらし、脳に伝達する役目をもつ。
 嗅覚受容体は、匂い物質がもつ化学情報を電気信号に変換し、神経細胞の興奮をもたらし、脳に伝達する役目をもつ。


 リガンドである匂い分子が結合すると、受容体と共役している[[3量体Gタンパク質]]の[[αサブユニット]]、[[Gαolf|Gα<sub>olf</sub>]]が[[Gβ|β]]、[[Gγ|γ]]サブユットと解離し、[[GDP]]型から[[GTP]]型への変換を受け、活性化される。活性化Gα<sub>olf</sub>が[[アデニル酸シクラーゼ]]の活性化を引き起こし、細胞内cAMP濃度の上昇をもたらすと[[環状ヌクレオチド作動性チャネル]]([[cyclic nucleotide-gated channel]], [[CNG]])が開口し、Na<sup>+</sup>イオン、[[カルシウム|Ca<sup>2+</sup>イオン]]の流入による[[細胞膜]]の[[脱分極]]がおきる。細胞内Ca<sup>2+</sup>イオン濃度の上昇は、Ca<sup>2+</sup>作動性Cl<sup>-</sup>チャネル, transmembrane protein16B (TMEM16B, 別名 anoctamin 2, calcium-activated chloride channel, ANO2)の活性化をもたらし、[[塩化物イオン|Cl<sup>-</sup>イオン]]が細胞外へ流出することでより大きな脱分極が起きる。これにより、神経細胞の[[活動電位]]が生じる。シグナルを終結させる機構として、CNGのcAMPによるチャネルの開口がCa<sup>2+</sup>濃度依存的な[[フィードバック制御]]をうけること、細胞内濃度が上昇したCa<sup>2+</sup>は、Na+/Ca<sup>2+</sup>交換体である[[Na+/Ca2+-exchanger isoform 4|Na<sup>+</sup>/Ca<sup>2+</sup>-exchanger isoform 4]] (NCKX4)によって細胞外へ排出されることが明らかになっている。
 リガンドである匂い分子が結合すると、受容体と共役している[[3量体Gタンパク質]]の[[αサブユニット]]、[[Gαolf|Gα<sub>olf</sub>]]が[[Gβ|β]]、[[Gγ|γ]]サブユットと解離し、[[GDP]]型から[[GTP]]型への変換を受け、活性化される。活性化Gα<sub>olf</sub>が[[アデニル酸シクラーゼ]]の活性化を引き起こし、細胞内cAMP濃度の上昇をもたらすと[[環状ヌクレオチド作動性チャネル]]([[cyclic nucleotide-gated channel]], [[CNG]])が開口し、Na<sup>+</sup>イオン、[[カルシウム|Ca<sup>2+</sup>イオン]]の流入による[[細胞膜]]の[[脱分極]]がおきる。細胞内Ca<sup>2+</sup>イオン濃度の上昇は、[[カルシウム依存性塩素チャネル|Ca<sup>2+</sup>作動性Cl<sup>-</sup>チャネル]]である[[transmembrane protein16B]] ([[TMEM16B]], 別名 [[anoctamin 2]], [[calcium-activated chloride channel]], [[ANO2]])の活性化をもたらし、[[塩化物イオン|Cl<sup>-</sup>イオン]]が細胞外へ流出することでより大きな脱分極が起きる。これにより、神経細胞の[[活動電位]]が生じる。シグナルを終結させる機構として、環状ヌクレオチド作動性チャネルのcAMPによるチャネルの開口がCa<sup>2+</sup>濃度依存的な[[フィードバック制御]]をうけること、細胞内濃度が上昇したCa<sup>2+</sup>は、[[Na+/Ca2+交換体|Na<sup>+</sup>/Ca<sup>2+</sup>交換体]]である[[Na+/Ca2+-exchanger isoform 4|Na<sup>+</sup>/Ca<sup>2+</sup>-exchanger isoform 4]] ([[NCKX4]])によって細胞外へ排出されることが明らかになっている。


 嗅覚受容体とリガンドである匂い分子との対応関係は、一部の例外を除いては、「多対多」の関係にある。すなわち、一つの受容体は、複数の匂い分子に応答し、一つの匂い分子は複数の受容体応答を生み出すため、異なる匂いは、応答受容体の組み合わせパターンの違いによって識別される。この仕組みは“[[combinatorial coding]]”と呼ばれ<ref name=Malnic1999><pubmed>10089886</pubmed></ref>、受容体数をはるかに超える膨大な種類の匂いの嗅ぎ分けを可能にする。
 嗅覚受容体とリガンドである匂い分子との対応関係は、一部の例外を除いては、「多対多」の関係にある。すなわち、一つの受容体は、複数の匂い分子に応答し、一つの匂い分子は複数の受容体応答を生み出すため、異なる匂いは、応答受容体の組み合わせパターンの違いによって識別される。この仕組みは“[[combinatorial coding]]”と呼ばれ<ref name=Malnic1999><pubmed>10089886</pubmed></ref>、受容体数をはるかに超える膨大な種類の匂いの嗅ぎ分けを可能にする。


 嗅覚受容体が多様な構造の匂い物質を広く認識するのに対し、微量アミン関連受容体は、揮発性アミン化合物をリガンドとして認識する。揮発性アミン化合物は、尿中や腐った食物に存在しており、げっ歯類では、微量アミン関連受容体は異性、天敵、食物の質の区別の検知に関わるとされている<ref name=Dewan2021><pubmed>33237477</pubmed></ref>。微量アミン関連受容体も嗅覚受容体と同様、Gα<sub>olf</sub>と共役し、cAMP産生を通じて嗅神経細胞の活動を起こすとされている<ref name=Liberles2015><pubmed></pubmed></ref>。
 嗅覚受容体が多様な構造の匂い物質を広く認識するのに対し、微量アミン関連受容体は、揮発性アミン化合物をリガンドとして認識する。揮発性アミン化合物は、尿中や腐った食物に存在しており、げっ歯類では、微量アミン関連受容体は異性、天敵、食物の質の区別の検知に関わるとされている<ref name=Dewan2021><pubmed>33237477</pubmed></ref>。微量アミン関連受容体も嗅覚受容体と同様、Gα<sub>olf</sub>と共役し、cAMP産生を通じて嗅神経細胞の活動を起こすとされている<ref name=Liberles2015></ref>。


 グアニル酸シクラーゼDは、糞尿中に存在するペプチドの他、呼気中に存在するCO<sub>2</sub>, CS<sub>2</sub>をリガンドとして認識する<ref name=Hu2007><pubmed>17702944</pubmed></ref><ref name=Munger2010><pubmed>20637621</pubmed></ref>。匂いリガンドとしてはたらくCO<sub>2</sub>, CS<sub>2</sub>は嗅神経細胞膜を通過し、細胞内で炭酸水素イオンに変換されるが、この炭酸水素イオンがGCDの細胞内触媒ドメインに作用し、cGMP 産生がおきる。cGMPはcGMP依存性イオンチャネルを開口させることにより、神経細胞の脱分極を引き起こす。
 グアニル酸シクラーゼDは、糞尿中に存在するペプチドの他、呼気中に存在するCO<sub>2</sub>, CS<sub>2</sub>をリガンドとして認識する<ref name=Hu2007><pubmed>17702944</pubmed></ref><ref name=Munger2010><pubmed>20637621</pubmed></ref>。匂いリガンドとしてはたらくCO<sub>2</sub>, CS<sub>2</sub>は嗅神経細胞膜を通過し、細胞内で[[wj:炭酸水素イオン|炭酸水素イオン]]に変換されるが、この炭酸水素イオンがグアニル酸シクラーゼDの細胞内触媒ドメインに作用し、[[cGMP]]産生がおきる。cGMPは[[cGMP依存性イオンチャネル]]を開口させることにより、神経細胞の脱分極を引き起こす。


 Membrane-spanning 4A receptorはリガンドとして、動物行動に関連のある[[脂肪酸]]や[[フェロモン]]様物質、[[2,5-dimethylpyrazine]] ([[2,5-DMP]])を認識するが、シグナル伝達は明らかになっていない<ref name=Greer2016><pubmed>27238024</pubmed></ref>。
 Membrane-spanning 4A receptorはリガンドとして、動物行動に関連のある[[脂肪酸]]や[[フェロモン]]様物質、[[2,5-ジメチルピラジン]] ([[2,5-dimethylpyrazine]], [[2,5-DMP]])を認識するが、シグナル伝達は明らかになっていない<ref name=Greer2016><pubmed>27238024</pubmed></ref>。


=== 疾患との関わり ===
=== 疾患との関わり ===
66行目: 66行目:
== 昆虫 ==
== 昆虫 ==
=== 発見、歴史的経緯など ===
=== 発見、歴史的経緯など ===
 昆虫においても、嗅覚は、餌の探索、交配相手の識別、繁殖場所の選択、天敵の感知など様々な局面で必要な感覚であり、生存維持に欠かせない。
 昆虫の嗅覚受容体については、1991年の脊椎動物での嗅覚受容体遺伝子ファミリーの発見により、昆虫でも同様のGタンパク質共役型受容体ファミリーが存在するとの予想のもと探索が進められたが、試みは失敗に終わった。その後、ショウジョウバエ遺伝子を対象とした発現解析などの研究をもとに、異なる3グループにより、1999年、昆虫嗅覚受容体遺伝子ファミリーの発見が報告された<ref name=Clyne1999><pubmed>10069338</pubmed></ref><ref name=Gao1999><pubmed>10458908</pubmed></ref><ref name=Vosshall1999><pubmed>10089887</pubmed></ref>。構成遺伝子数は、数10~300程度と種により大きく異なり、[[ショウジョウバエ]]では、62遺伝子存在する。


 嗅覚受容体については、1991年、脊椎動物での嗅覚受容体遺伝子ファミリーの発見により、昆虫でも同様のGタンパク質共役型受容体ファミリーが存在するとの予想のもと探索が進められたが、試みは失敗に終わった。その後、ショウジョウバエ遺伝子を対象とした発現解析などの研究をもとに、異なる3グループにより、1999年、昆虫嗅覚受容体遺伝子ファミリーの発見が報告された<ref name=Clyne1999><pubmed>10069338</pubmed></ref><ref name=Gao1999><pubmed>10458908</pubmed></ref><ref name=Vosshall1999><pubmed>10089887</pubmed></ref>。構成遺伝子数は、数10~300程度と種により大きく異なり、ショウジョウバエでは、62遺伝子存在する。
 その10年後、昆虫の第2の嗅覚受容体遺伝子ファミリーとして、[[イオノトロピック型嗅覚受容体]]ファミリーが発見された<ref name=Benton2009><pubmed>19135896</pubmed></ref>。構成遺伝子数は嗅覚受容体と同様、種により異なり、10〜100程度存在し、ショウジョウバエでは66遺伝子存在する。イオノトロピック型嗅覚受容体は、匂い物質の他に味物質、湿気、温度も感知する。


 その10年後、昆虫の第2の嗅覚受容体遺伝子ファミリーとして、イオノトロピック型受容体ファミリーが発見された<ref name=Benton2009><pubmed>19135896</pubmed></ref>。構成遺伝子数は嗅覚受容体と同様、種により異なり、10〜100程度存在し、ショウジョウバエでは66遺伝子存在する。IRは、匂い物質の他に味物質、湿気、温度も感知する。上記嗅覚受容体, IRファミリータンパク質以外に、味覚受容体,(Gustatory Receptor, GR)ファミリータンパク質のメンバー、Gr21a, Gr63aが嗅神経細胞に発現し、CO2を匂い物質として受容することが明らかになっている<ref name=Jones2007><pubmed>17167414</pubmed></ref><ref name=Kwon2007><pubmed>17360684</pubmed></ref>('''図2''')。
 上記嗅覚受容体, イオノトロピック型嗅覚受容体ファミリータンパク質以外に、[[味覚受容体#昆虫の味覚受容体|味覚受容体]]([[味覚受容体#昆虫の味覚受容体|gustatory receptor]], [[味覚受容体#昆虫の味覚受容体|GR]])ファミリータンパク質のメンバー、[[Gr21a]]、[[Gr63a]]が嗅神経細胞に発現し、CO<sub>2</sub>を匂い物質として受容することが明らかになっている<ref name=Jones2007><pubmed>17167414</pubmed></ref><ref name=Kwon2007><pubmed>17360684</pubmed></ref>('''図2''')。
[[ファイル:Touhara Olfactory Receptor Fig2.png|サムネイル|350px|'''図2. 昆虫の嗅覚受容体'''<br>OR: 昆虫嗅覚受容体、Orco: olfactory receptor co-receptor、IR: イオノトロピック型嗅覚受容体、Gr: 味覚受容体]]


=== 構造 ===
=== 構造 ===
 昆虫嗅覚受容体は、脊椎動物嗅覚受容体と同様、7回膜貫通構造を有するが、その膜トポロジーは逆であり、N末端が細胞質に、C末端が細胞外領域に位置する<ref name=Benton2006><pubmed>16402857</pubmed></ref><ref name=Hopf2015><pubmed>25584517</pubmed></ref>('''図2''')。脊椎動物嗅覚受容体と異なり、GPCRとの相同性はない。全般的に種間での配列保存性は低いが、唯一、種を超えて保存性の高い共通の嗅覚受容体が存在し、Orco (Olfactory receptor co-receptor)と呼ばれる。Orcoは、リガンド選択性を有する嗅覚受容体とヘテロ多量体を形成して機能すると考えられている。近年、クライオ電子顕微鏡解析により、イチジク寄生バチの一種、''Apocrypta baker''のOrco、および、イシノミ類の昆虫''Machilis hrabei''の嗅覚受容体, MhOR5について、立体構造が明らかになった<ref name=Butterwick2018><pubmed>30111839</pubmed></ref><ref name=DelMármol2021><pubmed>34349260</pubmed></ref>。Orcoは単独ではホモ4量体構造を形成することが示され、チャネルの開閉制御に重要な領域が明らかになった<ref name=Butterwick2018><pubmed>30111839</pubmed></ref>。MhOR5については、2種類の匂いリガンドとの共構造からリガンド結合によるチャネルの構造変化が示されるとともに、単一の受容体が多様な構造のリガンドを認識し得る構造基盤として、リガンド受容が複数の疎水的相互作用に基づくことも示された<ref name=DelMármol2021><pubmed>34349260</pubmed></ref>。
==== 昆虫嗅覚受容体 ====
 脊椎動物嗅覚受容体と同様、7回膜貫通構造を有するが、その膜トポロジーは逆であり、N末端が細胞質に、C末端が細胞外領域に位置する<ref name=Benton2006><pubmed>16402857</pubmed></ref><ref name=Hopf2015><pubmed>25584517</pubmed></ref>('''図2''')。脊椎動物嗅覚受容体と異なり、Gタンパク質共役型受容体との相同性はない。全般的に種間での配列保存性は低いが、唯一、種を超えて保存性の高い共通の嗅覚受容体が存在し、[[olfactory receptor co-receptor]] ([[Orco]])と呼ばれる。Orcoは、リガンド選択性を有する嗅覚受容体とヘテロ多量体を形成して機能すると考えられている。
 
 近年、[[クライオ電子顕微鏡]]解析により、[[イチジク]]寄生バチの一種、''[[Apocrypta bakeri]]''のOrco、および、[[イシノミ]]類の昆虫''[[Machilis hrabei]]''の嗅覚受容体, MhOR5について、立体構造が明らかになった<ref name=Butterwick2018><pubmed>30111839</pubmed></ref><ref name=DelMármol2021><pubmed>34349260</pubmed></ref>。Orcoは単独ではホモ4量体構造を形成することが示され、チャネルの開閉制御に重要な領域が明らかになった<ref name=Butterwick2018><pubmed>30111839</pubmed></ref>。MhOR5については、2種類の匂いリガンドとの共構造からリガンド結合によるチャネルの構造変化が示されるとともに、単一の受容体が多様な構造のリガンドを認識し得る構造基盤として、リガンド受容が複数の疎水的相互作用に基づくことも示された<ref name=DelMármol2021><pubmed>34349260</pubmed></ref>。


 イオノトロピック型受容体は、イオンチャネル型グルタミン酸受容体(iGluR)と相同性が高く、3回膜貫通構造を持つ。イオノトロピック型受容体においてもリガンド選択性を有するIR-Xと、Orco同様、リガンドに関わらず共通なIR-coY(ハエでは、IR8a, IR25a, IR76b)が存在する。チャネルとしての機能ユニットは、2つのIR-Xと2つのIR-coYから構成されるヘテロ4量体と考えられている<ref name=Abuin2011><pubmed> 21220098 </pubmed></ref><ref name=Abuin2019><pubmed> 30995910 </pubmed></ref>。IR-coYはアミノ末端ドメイン(amino-terminal domain, ATD), リガンド結合ドメイン(ligand-binding domain, LBD)、イオンチャネルドメインから構成され、iGluRと高度な保存性を有する一方、IR-XはATDを持たず、iGluRとの相同性が低く、特にLBDの保存度が低い。イオノトロピック型受容体の立体構造は明らかになっていない。
==== イオノトロピック型嗅覚受容体 ====
 [[イオンチャネル型グルタミン酸受容体]] (iGluR)と相同性が高く、3回膜貫通構造を持つ。イオノトロピック型受容体においてもリガンド選択性を有するIR-Xと、Orco同様、リガンドに関わらず共通な[[IR-coY]](ショウジョウバエでは、[[IR8a]], [[IR25a]], [[IR76b]])が存在する。チャネルとしての機能ユニットは、2つのIR-Xと2つのIR-coYから構成されるヘテロ4量体と考えられている<ref name=Abuin2011><pubmed>21220098</pubmed></ref><ref name=Abuin2019><pubmed> 30995910 </pubmed></ref>。IR-coYはアミノ末端ドメイン(amino-terminal domain, ATD), リガンド結合ドメイン(ligand-binding domain, LBD)、イオンチャネルドメインから構成され、iGluRと高度な保存性を有する一方、IR-Xはアミノ末端ドメインを持たず、iGluRとの相同性が低く、特にリガンド結合ドメインの保存度が低い。イオノトロピック型受容体の立体構造は明らかになっていない。


 GRは嗅覚受容体と同様、7回膜貫通構造を持ち、N末端が細胞質側、C末端が細胞外側のトポロジーを示す。Gr21a, Gr63aそのものの構造は示されていないが、他のGrファミリーメンバーである、カイコBmGr9のホモロジーモデリングと変異体解析において、GRも嗅覚受容体と同様のチャネル構造をもつことが示唆されている<ref name=Morinaga2022><pubmed>36209821</pubmed></ref>。
==== 味覚受容体 ====
 嗅覚受容体と同様、7回膜貫通構造を持ち、N末端が細胞質側、C末端が細胞外側のトポロジーを示す。[[Gr21a]], [[Gr63a]]そのものの構造は示されていないが、他の味覚受容体ファミリーメンバーである、[[カイコ]][[BmGr9]]のホモロジーモデリングと変異体解析において、味覚受容体も嗅覚受容体と同様のチャネル構造をもつことが示唆されている<ref name=Morinaga2022><pubmed>36209821</pubmed></ref>。


=== 発現部位 ===
=== 発現部位 ===
 昆虫嗅覚受容体嗅覚受容体, イオノトロピック型受容体は、昆虫の嗅覚器、触角(antenna)、小顎髭(maxillary palp)に発現する。嗅覚受容体として機能するGr21a, Gr63aも触角で発現する。これらの嗅覚器は感覚子とよばれる匂い物質を受容するための特殊な構造に覆われ、それぞれの感覚子には、1〜4の嗅神経細胞が格納されている。嗅覚受容体, IRはそれぞれ異なるタイプの感覚子に存在する嗅神経細胞樹状突起上に発現し、感覚子の穴から取り込まれた匂い物質を受容する。多くの場合、単一の嗅神経細胞は、リガンド選択性をもつ嗅覚受容体またはIRを1種類のみ発現するが、例外も報告されている<ref name=Herre2022><pubmed></pubmed></ref>。
 昆虫嗅覚受容体嗅覚受容体, イオノトロピック型嗅覚受容体は、嗅覚器である、[[触角]](antenna)、[[小顎髭]](maxillary palp)に発現する。嗅覚受容体として機能するGr21a, Gr63aも触角で発現する。これらの嗅覚器は[[感覚子]]とよばれる匂い物質を受容するための特殊な構造に覆われ、それぞれの感覚子には、1〜4の嗅神経細胞が格納されている。嗅覚受容体, IRはそれぞれ異なるタイプの感覚子に存在する嗅神経細胞樹状突起上に発現し、感覚子の穴から取り込まれた匂い物質を受容する。多くの場合、単一の嗅神経細胞は、リガンド選択性をもつ嗅覚受容体またはイオノトロピック型嗅覚受容体を1種類のみ発現するが、例外も報告されている<ref name=Herre2022><pubmed>35985288</pubmed></ref>。


=== 機能 ===
=== 機能 ===
 昆虫嗅覚受容体は、匂い物質をリガンドとするリガンド作動性非選択性陽イオンチャネルとして機能し、リガンド結合によりNa<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>を透過させる<ref name=Sato2008><pubmed>18408712</pubmed></ref><ref name=Wicher2008><pubmed>18408711</pubmed></ref>。脊椎動物の嗅覚受容体が、Gタンパク質を介したシグナルの活性化を通じて別分子であるイオンチャネルを開口させ、神経細胞に脱分極を引き起こすのに対し、昆虫嗅覚受容体は自身がイオンチャネルとしてはたらき、直接膜電位変化を引き起こせるため、匂い物質に対してより迅速な応答が可能となる。
==== 昆虫嗅覚受容体 ====
 匂い物質をリガンドとするリガンド作動性非選択性陽イオンチャネルとして機能し、リガンド結合によりNa<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>を透過させる<ref name=Sato2008><pubmed>18408712</pubmed></ref><ref name=Wicher2008><pubmed>18408711</pubmed></ref>。脊椎動物の嗅覚受容体が、Gタンパク質を介したシグナルの活性化を通じて別分子であるイオンチャネルを開口させ、神経細胞に脱分極を引き起こすのに対し、昆虫嗅覚受容体は自身がイオンチャネルとしてはたらき、直接膜電位変化を引き起こせるため、匂い物質に対してより迅速な応答が可能となる。


 認識するリガンドと嗅覚受容体の対応関係は、多くの場合、「多対多」を示すが<ref name=Hallem2004><pubmed>15210116</pubmed></ref>、特定の行動を引き起こす匂い物質やフェロモンに対しては、選択的に応答する嗅覚受容体が存在する。食物の有害性の指標としてショウジョウバエの忌避行動を引き起こすカビ臭、geosminにOr56a <ref name=Stensmyr2012><pubmed>23217715</pubmed></ref>, 産卵を促進するシトラス系の果皮の香りにOr19a<ref name=Dweck2013><pubmed>24316206</pubmed></ref>、カイコガの性フェロモン、BombykolとBombykalにそれぞれBmOR1, BmOR3 <ref name=Nakagawa2005><pubmed>15692016</pubmed></ref><ref name=Sakurai2004><pubmed>15545611</pubmed></ref>、ショウジョウバエの性フェロモンcVA (11-cis-vaccenyl acetate)にOr67d<ref name=Kurtovic2007><pubmed>17392786</pubmed></ref>が選択的に応答する。
 認識するリガンドと嗅覚受容体の対応関係は、多くの場合、「多対多」を示すが<ref name=Hallem2004><pubmed>15210116</pubmed></ref>、特定の行動を引き起こす匂い物質やフェロモンに対しては、選択的に応答する嗅覚受容体が存在する。食物の有害性の指標としてショウジョウバエの忌避行動を引き起こすカビ臭、geosminにOr56a <ref name=Stensmyr2012><pubmed>23217715</pubmed></ref>, 産卵を促進するシトラス系の果皮の香りに[[Or19a]]<ref name=Dweck2013><pubmed>24316206</pubmed></ref>、[[カイコガ]]の[[性フェロモン]]、[[bombykol]]と[[bombykal]]にそれぞれ[[BmOR1]], [[BmOR3]] <ref name=Nakagawa2005><pubmed>15692016</pubmed></ref><ref name=Sakurai2004><pubmed>15545611</pubmed></ref>、ショウジョウバエの性フェロモン[[11-cis-vaccenyl acetate]] ([[cVA]])に[[Or67d]]<ref name=Kurtovic2007><pubmed>17392786</pubmed></ref>が選択的に応答する。


 昆虫嗅覚受容体はリガンド非存在下でも自発的なチャネル開口活性をもち<ref name=Sato2008><pubmed>18408712</pubmed></ref><ref name=Wicher2008><pubmed>18408711</pubmed></ref>、嗅覚受容体発現嗅神経細胞の自発発火に寄与する。匂い物質には嗅神経細胞の活性化をもたらすもの以外に、自発発火を抑制するものも多数存在する<ref name=Hallem2006><pubmed>16615896</pubmed></ref>。
 昆虫嗅覚受容体はリガンド非存在下でも自発的なチャネル開口活性をもち<ref name=Sato2008><pubmed>18408712</pubmed></ref><ref name=Wicher2008><pubmed>18408711</pubmed></ref>、嗅覚受容体発現嗅神経細胞の自発発火に寄与する。匂い物質には嗅神経細胞の活性化をもたらすもの以外に、自発発火を抑制するものも多数存在する<ref name=Hallem2006><pubmed>16615896</pubmed></ref>。


 イオノトロピック型受容体も、匂い物質をリガンドとするリガンド作動性イオンチャネルとして機能し、Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>を透過させる非選択性陽イオンチャネルを構成する<ref name=Abuin2011><pubmed>21220098</pubmed></ref>。匂い物質のうち、主に酸、アミン、アルデヒドを受容する点で、エステルやアルコールを中心に受容する嗅覚受容体と相補的なはたらきをすると考えられている<ref name=Silbering2011><pubmed>21940430</pubmed></ref>。嗅覚受容体と同様、リガンド認識は「多対多」が基本であるが、選択的な認識が特定の行動に結びつく場合もあり、ショウジョウバエIr92aによるアミンやアンモニアの受容が誘引行動に、Ir84aによる食物由来の匂いの受容が雄のハエの交尾行動促進に繋がる報告例がある<ref name=Grosjean2011><pubmed>21964331</pubmed></ref><ref name=Min2013><pubmed>23509267</pubmed></ref>。IR発現神経細胞は、嗅覚受容体発現神経細胞に比べ、活性化に、より高濃度のリガンドあるいは、長時間のリガンド刺激が必要であり、順応がおきにくい<ref name=Getahun2012><pubmed>23162431</pubmed></ref>。
==== イオノトロピック型嗅覚受容体 ====
 匂い物質をリガンドとするリガンド作動性イオンチャネルとして機能し、Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>を透過させる非選択性陽イオンチャネルを構成する<ref name=Abuin2011><pubmed>21220098</pubmed></ref>。匂い物質のうち、主に[[酸]]、[[アミン]]、[[アルデヒド]]を受容する点で、[[エステル]]や[[アルコール]]を中心に受容する嗅覚受容体と相補的なはたらきをすると考えられている<ref name=Silbering2011><pubmed>21940430</pubmed></ref>。嗅覚受容体と同様、リガンド認識は「多対多」が基本であるが、選択的な認識が特定の行動に結びつく場合もあり、ショウジョウバエ[[Ir92a]]によるアミンや[[アンモニア]]の受容が誘引行動に、[[Ir84a]]による食物由来の匂いの受容が雄のショウジョウバエの[[交尾行動]]促進に繋がる報告例がある<ref name=Grosjean2011><pubmed>21964331</pubmed></ref><ref name=Min2013><pubmed>23509267</pubmed></ref>。イオノトロピック型嗅覚受容体発現神経細胞は、昆虫嗅覚受容体発現神経細胞に比べ、活性化に、より高濃度のリガンドあるいは、長時間のリガンド刺激が必要であり、[[順応]]がおきにくい<ref name=Getahun2012><pubmed>23162431</pubmed></ref>。


== 関連項目 ==
== 関連項目 ==

案内メニュー