「受容野」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
20行目: 20行目:


== 視覚系の受容野  ==
== 視覚系の受容野  ==
 
=== 古典的受容野と非古典的受容野 ===
 単独で呈示された刺激が細胞応答を変化させる空間範囲を古典的受容野(classical receptive field, CRF)とよぶ。視覚系で受容野とは古典的受容野を指す場合が多い。古典的受容野の周囲には[[非古典的受容野]](non classical receptive field, nCRF)とよばれる領域があるが、これについては後述する。 以下に、主要な視覚処理経路である、網膜、[[視床]][[外側膝状体]](Lateral Geniculate Nucleus, LGN)、[[大脳皮質]][[第一次視覚野]](Primary visual cortex, V1野)を経て高次視覚野へと至る経路の各段階の古典的受容野をみていく。  
 単独で呈示された刺激が細胞応答を変化させる空間範囲を古典的受容野(classical receptive field, CRF)とよぶ。視覚系で受容野とは古典的受容野を指す場合が多い。古典的受容野の周囲には[[非古典的受容野]](non classical receptive field, nCRF)とよばれる領域があるが、これについては後述する。 以下に、主要な視覚処理経路である、網膜、[[視床]][[外側膝状体]](Lateral Geniculate Nucleus, LGN)、[[大脳皮質]][[第一次視覚野]](Primary visual cortex, V1野)を経て高次視覚野へと至る経路の各段階の古典的受容野をみていく。  


=== 網膜、視床中継核でみられる受容野構造 ===
=== 網膜、視床中継核でみられる受容野構造 ===


[[Image:RetinalGanglisonCell.png|thumb|350px|<i>図1 網膜神経節細胞の受容野構造</i><br />(A) ON中心OFF周辺型 では、明るい光で興奮応答がみられる領域(ON領域という、緑で示す)が受容野の中心に 、暗い光で興奮応答がみられる領域(OFF領域という)がその周辺に位置し、2つの領域は同心円状に配置する(A)。(B) OFF中心ON周辺型 では、OFF領域が受容野の中心に 、ON領域がその周辺に配置する。A, Bの下段は、これらの構造の1次元断面図であり、ON領域の刺激感受性を正に、OFF領域の刺激感受性を負の方向に示している。中心部、周辺部は、それぞれサイズの異なるガウス関数で近似でき、全体の構造はその差分であるDOG関数で近似できる(黒線)。( C )  ON中心OFF周辺型細胞を2次元サイン波縞刺激でテストするとき、縞の幅が適切であり、縞の明部が受容の中心部に、縞の暗部が受容野の周辺部にくるときに強い興奮応答がみられる(Cの上段)。縞の幅が広く、縞の明部が受容野全体に入るとき細胞はあまり興奮しない。(Cの下段)]]  
[[Image:RetinalGanglisonCell.png|thumb|350px|<i>図1 網膜神経節細胞の受容野構造</i><br />(A) ON中心OFF周辺型 では、明るい光で興奮応答がみられる領域(ON領域という、緑で示す)が受容野の中心に 、暗い光で興奮応答がみられる領域(OFF領域という)がその周辺に位置し、2つの領域は同心円状に配置する(A)。(B) OFF中心ON周辺型 では、OFF領域が受容野の中心に 、ON領域がその周辺に配置する。A, Bの下段は、これらの構造の1次元断面図であり、ON領域の刺激感受性を正に、OFF領域の刺激感受性を負の方向に示している。中心部、周辺部は、それぞれサイズの異なるガウス関数で近似でき、全体の構造はその差分であるDOG関数で近似できる(黒線)。( C )  ON中心OFF周辺型細胞を2次元サイン波縞刺激でテストするとき、縞の幅が適切であり、縞の明部が受容の中心部に、縞の暗部が受容野の周辺部にくるときに強い興奮応答がみられる(Cの上段)。縞の幅が広く、縞の明部が受容野全体に入るとき細胞はあまり興奮しない。(Cの下段)]]  
38行目: 38行目:
==== 色対立型受容野と広帯域型受容野 ====
==== 色対立型受容野と広帯域型受容野 ====


 霊長類網膜神経節細胞は、形態的特徴からミジェット細胞とパラソル細胞にさらに区分されれる。ミジェット細胞は光波長(色)感受性をもち、しかも受容野中心部と周辺部で異なる光波長に感受性があるものが多い。たとえばある細胞は、受容野中心では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このような受容野の応答様式を[[色対立型]](color opponent type)とよぶ。パラソル細胞の中心部、周辺部では、広い範囲の光波長に感受性がみられ、こちらの受容野タイプは[[広帯域型]](broad-band type)とよぶ <ref><pubmed> 10530750 </pubmed></ref>。  
 霊長類網膜神経節細胞は、形態的特徴からミジェット細胞とパラソル細胞にさらに区分される。ミジェット細胞は光波長(色)感受性をもち、しかも受容野中心部と周辺部で異なる光波長に感受性があるものが多い。たとえばある細胞は、受容野中心では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このような受容野の応答様式を[[色対立型]](color opponent type)とよぶ。パラソル細胞の中心部、周辺部では、広い範囲の光波長に感受性がみられ、こちらの受容野タイプは[[広帯域型]](broad-band type)とよぶ <ref><pubmed> 10530750 </pubmed></ref>。  


=== 第一次視覚野(V1野)単純型細胞の受容野構造  ===
=== 第一次視覚野(V1野)単純型細胞の受容野構造  ===
47行目: 47行目:


==== ガボールフィルター による近似====
==== ガボールフィルター による近似====
 単純型細胞の古典的受容野では、ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であるが、これらは全てガボールフィルーター(ガボール関数)で近似できる(図2)<ref><pubmed> 3437330 </pubmed></ref> 。ガボールフィルターは[[ガウス関数]]とサイン波の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示すサイズ、方位、スケール、そして位相の異なる様々な構造を表すことができる。 <ref><pubmed> 8637596 </pubmed></ref>。  
 単純型細胞の古典的受容野では、ON、OFF領域が伸びる軸、大きさ、位置関係は細胞により様々であるが、これらは全てガボールフィルーター(ガボール関数)で近似できる(図2B)<ref><pubmed> 3437330 </pubmed></ref> 。ガボールフィルターは[[ガウス関数]]とサイン波の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示すサイズ、方位、スケール、そして位相の異なる様々な構造を表すことができる。 <ref><pubmed> 8637596 </pubmed></ref>。  


====単純型細胞受容野の線形性 ====
====単純型細胞受容野の線形性 ====


 単純型細胞の受容野には、[[X細胞]]の受容野と同様、強い線形性がみられる。このため単純型細胞は、そのON領域、OFF領域と形がマッチした刺激にもっとも強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、[[空間周波数]](spatial frequency)(=周期の逆数)、[[位相]](phase)をもつものが適刺激となる(図2C参照)。ここで適刺激とは細胞に強い活動を引き起こす刺激のことである。細胞の応答の強さも、受容野構造と刺激の[[線形畳み込み]](linear convolution)を行った結果に、0以下の信号を出力しない[[半波整流]](half rectification)で十分近似できる。<ref><pubmed> 722589  </pubmed></ref> <ref><pubmed> 1450099  </pubmed></ref>。  
 単純型細胞の受容野には、[[X細胞]]の受容野と同様、強い線形性がみられる。このため単純型細胞は、そのON領域、OFF領域と形がマッチした刺激にもっとも強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、[[空間周波数]](spatial frequency)(=サイン波の周期の逆数)、[[位相]](phase)をもつものが適刺激となる(図2C参照)。ここで適刺激とは細胞に強い活動を引き起こす刺激のことである。細胞の応答の強さも、受容野構造と刺激の[[線形畳み込み]](linear convolution)を行った結果に、0以下の信号を出力しない[[半波整流]](half rectification)で十分近似できる。<ref><pubmed> 722589  </pubmed></ref> <ref><pubmed> 1450099  </pubmed></ref>。  


==== 運動方向選択性と時空間受容野====
==== 運動方向選択性と時空間受容野====


 単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それとは反対方向に動くときには反応しない[[運動方向選択性]]を示す<ref name="ref3" />。このような細胞の時空間受容野では、時間が変化するにつれて、ON領域あるいはOFF領域の位置が一定の割合でずれていく<ref><pubmed>8492152</pubmed></ref>。このずれていく方向が細胞の好みの運動方向を表す。このような位置の変化を示さない細胞も存在し、そのような細胞は[[運動方向選択性]]を示さない。  
 単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それとは反対方向に動くときには反応しない[[運動方向選択性]]を示す<ref name="ref3" />。このような細胞の時空間受容野では、時間軸に沿ってON領域あるいはOFF領域の位置がある方向にずれていく<ref><pubmed>8492152</pubmed></ref>。この方向が細胞の好みの運動方向を表す。このような位置の変化を示さない細胞も存在し、そのような細胞は[[運動方向選択性]]を示さない。  


==== 両眼の受容野====
==== 両眼の受容野====
62行目: 62行目:
=== 複雑型細胞の受容野構造  ===
=== 複雑型細胞の受容野構造  ===


[[Image:V1ComplexRF.png|thumb|350px|<i>図3. 複雑型細胞の受容野構造とその内部メカニズム</i><br /> A. 複雑型細胞の受容野の模式図。上に2次元構造、下に1次元断面図を示す。複雑型細胞ではON領域とOFF領域が重なりあっている。B. 複雑型細胞の受容野構造の内部メカニズム。Cと記した○が複雑型細胞を表した出力ユニット(エネルギーユニットという)を表す。このモデルでは、単純型細胞も模した4つのサブユニット(S1, S2, S3, S4) からの入力が収斂することでCの出力が形成させる。各サブユニットは90度ずつ位相のずれた同じ方位、空間周波数のガボールフィルターをもち、フィルターを通過した信号を半波整流して出力する。このような受容野内部構造により、明るい線分や暗い線分が受容野内部のどの位置に呈示されても、その方位や幅が適切であれば、複雑型細胞は興奮応答を示す。]]  
[[Image:V1ComplexRF.png|thumb|350px|<i>図3. 複雑型細胞の受容野構造とその内部メカニズム</i><br /> A. 複雑型細胞の受容野の模式図。上に2次元構造、下に1次元断面図を示す。複雑型細胞ではON領域とOFF領域が重なりあっている。B. 複雑型細胞の受容野構造の内部メカニズム。右のCが複雑型細胞を表した出力ユニット(エネルギーユニットという)を表す。このモデルでは、単純型細胞も模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することでCの出力が形成させる。各サブユニットは90度ずつ位相のずれた同じ方位、空間周波数のガボールフィルターをもち、フィルターを通過した信号を半波整流して出力する。このような受容野内部構造により、明るい線分や暗い線分が受容野内部のどの位置に呈示されても、その方位や幅が適切であれば、複雑型細胞は興奮応答を示す。]]  


 複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答が位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相に関係なく強い反応がみられる。この特性は、同じ方位や、空間周波数選択性をもち、受容野位相だけが異なる単純型細胞からの入力が複雑型細胞で収斂することでできあがるという仮説が提唱されている<ref name="ref4" />。これを最も単純化したモデルが図3に示す[[エネルギーモデル]](energy model)である。このモデルでは、ガボールフィルターの出力を半波整流した信号を出す4つのサブユニット(S1, S2,S3, S4. これは単純型細胞の出力を模したものである)からの出力が収斂することで、複雑型細胞を表すエネルギーユニット(Cで表す)の受容野が形成される。4つのフィルターの位相は90ずつずれている。さらにサブユニットが同じ時間受容野をもつようにモデルを拡張し、同じ運動方向選択性を示すようにしたとき、エネルギーユニットでも、運動方向選択性がみられるようになる。この拡張したエネルギーモデルは[[運動エネルギーモデル]](motion energy model)とよばれている<ref><pubmed> 3973762  </pubmed></ref>。複雑型細胞の大半は運動方向選択性を示すが<ref name="ref3" />、運動エネルギーモデルはこの性質をよく説明する<ref><pubmed> 1574836 </pubmed></ref>。  
 複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答が位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相に関係なく強い反応がみられる。この特性は、同じ方位や、空間周波数選択性をもち、受容野位相だけが異なる単純型細胞からの入力が複雑型細胞で収斂することでできあがるという仮説が提唱されている<ref name="ref4" />。これを最も単純化したモデルが図3に示す[[エネルギーモデル]](energy model)である。このモデルでは、単純型細胞も模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することで、複雑型細胞を模したC(エネルギーユニット)の応答が形成させる。各サブユニットは90度ずつ位相のずれた同じ方位、空間周波数のガボールフィルターをもち、フィルターを通過した信号を半波整流して出力する。さらにサブユニットが同じ時間受容野をもつようにモデルを拡張し、同じ運動方向選択性を示すようにしたとき、エネルギーユニットでも、運動方向選択性がみられるようになる。この拡張したエネルギーモデルは[[運動エネルギーモデル]](motion energy model)とよばれている<ref><pubmed> 3973762  </pubmed></ref>。複雑型細胞の大半は運動方向選択性を示すが<ref name="ref3" />、運動エネルギーモデルはこの性質をよく説明する<ref><pubmed> 1574836 </pubmed></ref>。  


 複雑型細胞の多くはまた、自身の受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できることが知られている。これについては[[両眼視差エネルギーモデル]](disparity energy model)を参照のこと<ref><pubmed> 2396096 </pubmed></ref>。  
 複雑型細胞の多くはまた、自身の受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できることが知られている。これについては[[両眼視差エネルギーモデル]](disparity energy model)を参照のこと<ref><pubmed> 2396096 </pubmed></ref>。  
78行目: 78行目:
 V1以外にも霊長類視覚系には30以上もの領域があり、これらの領野はV1野、V2野を経て側頭連合野(temporal lobe)へと至る腹側経路(ventral pathway)と頭頂連合野(parietal lobe)へと至る背側経路(dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている <ref><pubmed> 1822724 </pubmed></ref> 。  
 V1以外にも霊長類視覚系には30以上もの領域があり、これらの領野はV1野、V2野を経て側頭連合野(temporal lobe)へと至る腹側経路(ventral pathway)と頭頂連合野(parietal lobe)へと至る背側経路(dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている <ref><pubmed> 1822724 </pubmed></ref> 。  


 細胞の受容野のサイズは高次の領域に向かうにつれて大きくなる。霊長類V1野で中心視野に受容野をもつ細胞の受容野は0.1~1度程度であるが、視覚経路の最終段階に位置するTE野では10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えばV1野の周辺視野の受容野サイズは5度から10度程度である。またV1細胞の受容野位置は対側視野に限られるものが大部分であるが、視覚経路に沿って受容野サイズが大きくなるにつれて、同側視野も含むものが序々に増してくる。TE野では多くの細胞が同側視野を受容野に含む<ref><pubmed> 6470767 </pubmed></ref>。  
 細胞の受容野のサイズは高次の領域に向かうにつれて大きくなる。霊長類V1野で中心視野に受容野をもつ細胞の受容野サイズは0.1~1度程度であるが、腹側経路の最終段階に位置するTE野では10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えばV1野の周辺視野の受容野サイズは5度から10度程度である。またV1細胞の受容野位置は対側視野に限られるものが大部分であるが、視覚経路に沿って受容野サイズが大きくなるにつれて、同側視野も含むものが序々に増してくる。TE野では多くの細胞が同側視野を受容野に含む<ref><pubmed> 6470767 </pubmed></ref>。  
====背側経路でみられる受容野====
====背側経路でみられる受容野====
 空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、V3A野やその上位にある7a野には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときにのみ強く活動するような細胞が存在する<ref><pubmed> 8385201 </pubmed></ref>。PO野には、網膜座標には依存せず、体にたいする位置関係で固定された受容野をもつ細胞が現れる<ref><pubmed> 8270019 </pubmed></ref>。このような身体座標系で固定された受容野は、視覚入力と体性感覚入力の両方を受けるVIP野や7b野などにもみられる。この受容野をもつ細胞は、受容野部位への皮膚刺激とその場所へ向かってくる視覚刺激の両方に応答するような細胞が知られている<ref><pubmed> 8385201 </pubmed></ref>。背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の奥行き位置や3次元形状の表現に関与していると考えられている<ref><pubmed> 8270019 </pubmed></ref><ref><pubmed> 10805708 </pubmed></ref>。  
 空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、V3A野やその上位にある7a野には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときにのみ強く活動するような細胞が存在する<ref><pubmed> 8385201 </pubmed></ref>。PO野には、網膜座標には依存せず、体にたいする位置関係で固定された受容野をもつ細胞が現れる<ref><pubmed> 8270019 </pubmed></ref>。このような身体座標系で固定された受容野をもつ細胞は、視覚入力と体性感覚入力の両方を受けるVIP野や7b野などにもみられる。これらは、身体の一部に受容野をもち、そこへの皮膚刺激とその場所へ向かってくる視覚刺激の両方に応答する<ref><pubmed> 8385201 </pubmed></ref>。背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の奥行き位置や3次元形状の表現に関与していると考えられている<ref><pubmed> 8270019 </pubmed></ref><ref><pubmed> 10805708 </pubmed></ref>。  
====腹側経路でみられる受容野====
====腹側経路でみられる受容野====
 腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野-&gt;V4野-&gt;TEO野-&gt;TE野と向かう腹側経路では、V2野に折れ線に反応する細胞<ref><pubmed> 15056711 </pubmed></ref> 、V4野にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞<ref><pubmed> 8418487 </pubmed></ref>TEO野には物体の部分的特徴、TE野に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する<ref><pubmed> 6470767 </pubmed></ref><ref><pubmed> 1448150 </pubmed></ref>。さらに、これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性をもつことから、この経路も奥行き知覚に関与していると考えられている<ref><pubmed> 10899190 </pubmed></ref>。  
 腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野-&gt;V4野-&gt;TEO野-&gt;TE野と向かう腹側経路では、V2野に折れ線に反応する細胞<ref><pubmed> 15056711 </pubmed></ref> 、V4野にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞<ref><pubmed> 8418487 </pubmed></ref>TEO野には物体の部分的特徴、TE野に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する<ref><pubmed> 6470767 </pubmed></ref><ref><pubmed> 1448150 </pubmed></ref>。さらに、これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性をもつことから、この経路も奥行き知覚に関与していると考えられている<ref><pubmed> 10899190 </pubmed></ref>。  
197

回編集

案内メニュー