「脂質ラフト」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:


== リポソームにおける脂質ドメイン ==
== リポソームにおける脂質ドメイン ==
[[Image:Raft2.PNG|thumb|'''図1 (A)スフィンゴ脂質の構造と(B)スフィンゴ脂質―コレステロール間相互作用を説明するumbrella model'''<br>Aの図では水素結合可能な部位(水色)と不飽和アシル鎖(ピンク)が強調してある。]]
[[Image:Raft2.PNG|thumb|350px|'''図1 (A)スフィンゴ脂質の構造と(B)スフィンゴ脂質―コレステロール間相互作用を説明するumbrella model'''<br>Aの図では水素結合可能な部位(水色)と不飽和アシル鎖(ピンク)が強調してある。]]
リポソームのような人工膜において、脂質のアルキル鎖は低温下では全てトランス型の立体配座をとり伸びた状態にある。密なパッキングのため分子間にはファンデルワールス力が強く働き、膜の流動性は妨げられている。一方、相転移温度(Tm)以上ではアルキル鎖が融解し、一部がトランス型からゴーシュ型の立体配座へと変化する(液晶相)。この状態では、分子間相互作用が減弱するため脂質の運動性が高まる。ここにコレステロールが共存した場合、硬い平板構造をもつステロール骨格がアルキル鎖の間隙を埋め、トランス型の立体配座を安定化することによって秩序性が増す。一方、脂質の運動性はよく保たれており、拡散係数は液晶相に比較して2~3分の1程度減少するに過ぎない<ref><pubmed>15139814</pubmed></ref>。さらにコレステロールは飽和アルキル鎖のみから成る脂質と安定に相互作用するため、飽和脂質と不飽和脂質、およびコレステロールの3者混合系では同一膜内で相分離を生じる。すなわち、飽和脂質とコレステロールから成る液体秩序相(liquid-ordered; l<sub>o</sub>)と、不飽和脂質が分布する液体非秩序相(liquid-disordered; l<sub>d</sub>)とが共存した状態になる。l<sub>o</sub>には直鎖状の飽和脂肪酸をもつ脂質が集積するため、周囲のl<sub>d</sub>相よりも膜が厚い特徴がある。<br>
リポソームのような人工膜において、脂質のアルキル鎖は低温下では全てトランス型の立体配座をとり伸びた状態にある。密なパッキングのため分子間にはファンデルワールス力が強く働き、膜の流動性は妨げられている。一方、相転移温度(Tm)以上ではアルキル鎖が融解し、一部がトランス型からゴーシュ型の立体配座へと変化する(液晶相)。この状態では、分子間相互作用が減弱するため脂質の運動性が高まる。ここにコレステロールが共存した場合、硬い平板構造をもつステロール骨格がアルキル鎖の間隙を埋め、トランス型の立体配座を安定化することによって秩序性が増す。一方、脂質の運動性はよく保たれており、拡散係数は液晶相に比較して2~3分の1程度減少するに過ぎない<ref><pubmed>15139814</pubmed></ref>。さらにコレステロールは飽和アルキル鎖のみから成る脂質と安定に相互作用するため、飽和脂質と不飽和脂質、およびコレステロールの3者混合系では同一膜内で相分離を生じる。すなわち、飽和脂質とコレステロールから成る液体秩序相(liquid-ordered; l<sub>o</sub>)と、不飽和脂質が分布する液体非秩序相(liquid-disordered; l<sub>d</sub>)とが共存した状態になる。l<sub>o</sub>には直鎖状の飽和脂肪酸をもつ脂質が集積するため、周囲のl<sub>d</sub>相よりも膜が厚い特徴がある。<br>
動物細胞の細胞膜(形質膜)は、他のオルガネラとは異なり、30 mol%程度という多量のコレステロールを含有している。また動物細胞における主要な膜脂質であるグリセロリン脂質は不飽和脂肪酸を持つものが大半を占めるが、細胞膜に多いスフィンゴ脂質の構成脂肪酸の殆どは飽和脂肪酸である。これらの理由から、細胞膜のスフィンゴ脂質とコレステロールもl<sub>o</sub>相を形成する可能性がある。なおスフィンゴ脂質とコレステロールの集合ができるメカニズムについては、前述のモデル以外にスフィンゴ脂質の嵩高い極性頭部の下の空隙をコレステロールが埋めるというumbrella modelや、スフィンゴシン骨格のアミド結合が分子間で水素結合をつくり安定化するモデルが提唱されている。  
動物細胞の細胞膜(形質膜)は、他のオルガネラとは異なり、30 mol%程度という多量のコレステロールを含有している。また動物細胞における主要な膜脂質であるグリセロリン脂質は不飽和脂肪酸を持つものが大半を占めるが、細胞膜に多いスフィンゴ脂質の構成脂肪酸の殆どは飽和脂肪酸である。これらの理由から、細胞膜のスフィンゴ脂質とコレステロールもl<sub>o</sub>相を形成する可能性がある。なおスフィンゴ脂質とコレステロールの集合ができるメカニズムについては、前述のモデル以外にスフィンゴ脂質の嵩高い極性頭部の下の空隙をコレステロールが埋めるというumbrella modelや、スフィンゴシン骨格のアミド結合が分子間で水素結合をつくり安定化するモデルが提唱されている。  
19行目: 19行目:


=== 顕微鏡による可視化 ===
=== 顕微鏡による可視化 ===
[[Image:Raft1.PNG|thumb|'''図2 脂質ラフトの形成と安定化''']]  
[[Image:Raft1.PNG|thumb|350px|'''図2 脂質ラフトの形成と安定化''']]  
[[Image:Raft3.PNG|thumb|'''図3 疎水性領域の長さに基づく脂質―タンパク質間相互作用''']]  
[[Image:Raft3.PNG|thumb|350px|'''図3 疎水性領域の長さに基づく脂質―タンパク質間相互作用''']]  
人工膜のl<sub>o</sub>相はミクロンスケールのドメインとして観察されるのに対し、細胞膜では通常このような大きなラフトは観察されない。これはラフトの大きさが通常の光学顕微鏡の分解能の限界よりも小さいためと考えられる。しかし高分解能の可視化技術を用いることにより、直径10~200 nmの脂質ドメインが観察される。たとえば、超解像度光学顕微鏡のひとつstimulated emission depletion (STED) microscopyを用いた解析では、スフィンゴ脂質やGPIアンカー型受容体が20 nmサイズの領域にごく短時間(&lt;10-20 ms)局在することが明らかになった<ref><pubmed>19098897</pubmed></ref>。また、楠見らは1粒子追跡法(single particle tracking)によりGPIアンカー型受容体の動態を解析し、リガンドや抗体によって多量体化した場合に、受容体が50 nmサイズの領域に一過性(約0.5 s)にトラップされる現象を見出した。トラップが起きるためには細胞質側のLynなどエフェクター分子の活性化が必要であった<ref><pubmed>17517964</pubmed></ref>。こうした多くの報告を総合することで、非刺激状態の細胞のラフトは当初想定されていたよりも小さくかつ短寿命であり、何らかの刺激を受けることによって安定化されると考えられている。またラフトの形成には脂質の相分離のみならず、アクチンなどのタンパク質と脂質の相互作用の関与が強く示唆されている。<br>
人工膜のl<sub>o</sub>相はミクロンスケールのドメインとして観察されるのに対し、細胞膜では通常このような大きなラフトは観察されない。これはラフトの大きさが通常の光学顕微鏡の分解能の限界よりも小さいためと考えられる。しかし高分解能の可視化技術を用いることにより、直径10~200 nmの脂質ドメインが観察される。たとえば、超解像度光学顕微鏡のひとつstimulated emission depletion (STED) microscopyを用いた解析では、スフィンゴ脂質やGPIアンカー型受容体が20 nmサイズの領域にごく短時間(&lt;10-20 ms)局在することが明らかになった<ref><pubmed>19098897</pubmed></ref>。また、楠見らは1粒子追跡法(single particle tracking)によりGPIアンカー型受容体の動態を解析し、リガンドや抗体によって多量体化した場合に、受容体が50 nmサイズの領域に一過性(約0.5 s)にトラップされる現象を見出した。トラップが起きるためには細胞質側のLynなどエフェクター分子の活性化が必要であった<ref><pubmed>17517964</pubmed></ref>。こうした多くの報告を総合することで、非刺激状態の細胞のラフトは当初想定されていたよりも小さくかつ短寿命であり、何らかの刺激を受けることによって安定化されると考えられている。またラフトの形成には脂質の相分離のみならず、アクチンなどのタンパク質と脂質の相互作用の関与が強く示唆されている。<br>
人工膜のl<sub>o</sub>相と違って細胞膜のラフトが小さい理由については幾つかの考察がある。単純な2相系のリポソームでは、l<sub>o</sub>相は平衡状態では融合して大きな領域を作る。これはl<sub>o</sub>とl<sub>d</sub>の境界部で脂質鎖の長さにミスマッチを生じると、疎水部が親水性環境に露出してエネルギー的に不利であるため、境界/面積比が最小になるように融合が進むことによる。一方、細胞膜では膜タンパク質が脂質との相互作用によりラフト形成や安定化に寄与しうる。例えば、ある種の膜貫通タンパク質はl<sub>o</sub>とl<sub>d</sub>の界面に分布することで膜の厚さのミスマッチを軽減すると考えられる。また細胞膜では膜成分に絶え間ない出入がある。これらの要因を考慮すると、細胞膜でのラフトは数十nm程度のサイズで分散した状態が安定であるという定量的考察がなされている<ref><pubmed>16241845</pubmed></ref>。  
人工膜のl<sub>o</sub>相と違って細胞膜のラフトが小さい理由については幾つかの考察がある。単純な2相系のリポソームでは、l<sub>o</sub>相は平衡状態では融合して大きな領域を作る。これはl<sub>o</sub>とl<sub>d</sub>の境界部で脂質鎖の長さにミスマッチを生じると、疎水部が親水性環境に露出してエネルギー的に不利であるため、境界/面積比が最小になるように融合が進むことによる。一方、細胞膜では膜タンパク質が脂質との相互作用によりラフト形成や安定化に寄与しうる。例えば、ある種の膜貫通タンパク質はl<sub>o</sub>とl<sub>d</sub>の界面に分布することで膜の厚さのミスマッチを軽減すると考えられる。また細胞膜では膜成分に絶え間ない出入がある。これらの要因を考慮すると、細胞膜でのラフトは数十nm程度のサイズで分散した状態が安定であるという定量的考察がなされている<ref><pubmed>16241845</pubmed></ref>。  
100

回編集

案内メニュー