「カリウムチャネル」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英:potassium channel、英略語:K<sup>+</sup> channel<br>  
英:potassium channel、英略語:K<sup>+</sup> channel<br>  


<br>要約<br>カリウムチャネルはカリウム(K<sup>+</sup>)イオンを選択的に透過させるイオンチャネルである。静止膜電位の形成や電気的な細胞応答、シナプス伝達やカリウム濃度恒常性維持に関わっている。ほとんどのカリウムチャネルはαサブユニットが四量体を形成し、中央部分にカリウムを通す小孔(ポア)が開くようになっている。カリウムチャネルは多様性の高いイオンチャネルであり、電気生理学的特性やαサブユニットの膜貫通領域の構造の違いにより、六回膜貫通型の「電位依存性カリウムチャネル」と「カルシウム活性化カリウムチャネル」、二回膜貫通型の「内向き整流性カリウムチャネル」、四回膜貫通型の「Two-pore domainカリウムチャネル」に大別される。それらは、イオン透過経路を構成するαサブユニットと電流特性や膜発現量を制御するβサブユニットを含めて100種類以上の遺伝子群から構成されている。これら豊富なサブユニット分子種、αサブユニットのヘテロ四量体形成、さらにβサブユニットとの複合体形成がカリウムチャネルの多様性の実体的理由である。イオンチャネルの中で、電気生理学的な解析、生化学・構造生物学的な解析が最も行われているのがカリウムチャネルであり、イオンチャネルの分子機構に関する極めて重要な研究成果がカリウムチャネルを用いた研究から得られている。  
<br>要約<br>カリウムチャネルはカリウム(K<sup>+</sup>)イオンを選択的に透過させるイオンチャネルである。静止膜電位の形成や電気的な細胞応答、シナプス伝達やカリウム濃度恒常性維持に関わっている。ほとんどのカリウムチャネルはαサブユニットが四量体を形成し、中央部分にカリウムを通す小孔(ポア)が開くようになっている。電気生理学的特性やαサブユニットの膜貫通領域の構造の違いにより、六回膜貫通型の「電位依存性カリウムチャネル」と「カルシウム活性化カリウムチャネル」、二回膜貫通型の「内向き整流性カリウムチャネル」、四回膜貫通型の「Two-pore domainカリウムチャネル」に大別される。それらは、イオン透過経路を構成するαサブユニットと電流特性や膜発現量を制御するβサブユニットを含めて100種類以上の遺伝子群から構成されている。これら豊富なサブユニット分子種、αサブユニットのヘテロ四量体形成、さらにβサブユニットとの複合体形成がカリウムチャネルの多様性の実体的理由である。イオンチャネルの中で、電気生理学的な解析、生化学・構造生物学的な解析が最も行われているのがカリウムチャネルであり、イオンチャネルの分子機構に関する極めて重要な研究成果がカリウムチャネルを用いた研究から得られている。  


<br>  
<br>  
7行目: 7行目:
= 1.カリウムチャネルの基本的分子機能と構造<br>  =
= 1.カリウムチャネルの基本的分子機能と構造<br>  =


細胞は脂質二重膜に囲まれているため、荷電したイオンは自由に細胞に出入りすることは出来ない。そこで細胞はイオンを通すための小孔を持っている。電気化学ポテンシャルを駆動力として、カリウムイオンの選択的な膜透過をつかさどる蛋白質がカリウムチャネルである<ref>'''Y Kurachi, LY Jan, M Lazdunski'''<br>"Potassium Ion Channels: Molecular Structure, Function, and Diseases". Current Topics in Membranes, vol 46<br>''Academic Press, London'':1999 ISBN 0-12-153346-8.</ref><ref>'''B Hille'''<br>"Chapter 5: Potassium Channels and Chloride Channels". Ion channels of excitable membranes<br>''Sinauer Associate Inc, Sunderland, MA'':pp. 131–168:2002 ISBN 0-87893-321-2.</ref>。従来の電気生理学的解析により各組織、各細胞で異なる性質を持つカリウムチャネルの存在が明らかにされてきた。しかしそれらに共通する機能として、生体膜のエネルギー障壁を克服しカリウムイオンを選択的に透過させる機能を持っている。また、多くは特徴的なゲート機能を備えている。<br>  
細胞は脂質二重膜に囲まれているため、荷電したイオンは自由に細胞に出入りすることは出来ない。そこで細胞はイオンを通すための小孔を持っている。電気化学ポテンシャルを駆動力として、カリウムイオンの選択的な膜透過をつかさどる蛋白質がカリウムチャネルである<ref>'''Y Kurachi, LY Jan, M Lazdunski'''<br>"Potassium Ion Channels: Molecular Structure, Function, and Diseases". Current Topics in Membranes, vol 46<br>''Academic Press, London'':1999 ISBN 0-12-153346-8.</ref><ref>'''B Hille'''<br>"Chapter 5: Potassium Channels and Chloride Channels". Ion channels of excitable membranes<br>''Sinauer Associate Inc, Sunderland, MA'':pp. 131–168:2002 ISBN 0-87893-321-2.</ref>。従来の電気生理学的解析により各組織、各細胞で異なる性質を持つカリウムチャネルの存在が明らかにされてきた。しかしそれらに共通する機能として、生体膜のエネルギー障壁(ボルンエネルギー)を克服しカリウムイオンを選択的に透過させる機能を持っている。また、多くは特徴的なゲート機能を備えている。<br>  


== 二次構造  ==
== 二次構造  ==
21行目: 21行目:
== 選択的イオン透過機能を支える構造基盤  ==
== 選択的イオン透過機能を支える構造基盤  ==


[[Image:KCh fig3.png|thumb|right|369x344px|'''図3.カリウムチャネルの選択的イオン透過機構の構造基盤'''<br>a, イオンは水分子と相互作用(水和)することで水に溶けている(上段)。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(下段)。b, カリウムチャネルのシグネチャ配列がイオン選択フィルターを形成する。カリウムは中心軸に沿ってフィルター内では4箇所の結合部位に存在する。c,4本のペプチド主鎖から提供された酸素原子が5つの回転対称な平面を構成する。カリウム(緑丸)と水(赤丸)は交互に一列配置しているイオン透過過程のモデル。カリウムの[1,3][2,4]配置では上下の平面由来の8つの酸素原子と配位しており、中間遷移状態では同一平面の4つの酸素原子および上下の2つの水分子と配位している。いづれの配位結合もエネルギー的にはほぼ等価であり、これがカリウムのスムーズな移動を保証する。 ]]イオンチャネルの電気生理学的な解析によって、単一チャネル電流を定量的に記録することが可能である。この方法によって単一のイオンチャネルを透過するイオンの速度を見積もることが出来る。この実験から、カリウムチャネルではK<sup>+</sup>イオンがNa<sup>+</sup>イオンよりも1000倍ほど透過性が高いことが知られている(一価陽イオンの選択性序列は K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>&gt;Na<sup>+</sup>&gt;Li<sup>+</sup>。これはEisenman IV型であり、イオン選択フィルターがやや弱い静電場をもつことを示唆する)。しかも、開いた小孔を電気化学的な差に従って、イオンの水溶液中の拡散速度に匹敵する程の、1秒間に数百万個のイオンが通過することが分かっている(単一イオンチャネルコンダクタンスが数百pSに達すものもある)。つまりカリウムチャネルは極めて高いイオン選択性と非常に早いイオン透過速度という一見相容れない特性を両立する。特定のイオンを透過させる機構としては大きさによる分子フィルター機構がまず考えられる。しかしながら、イオン半径では、Na<sup>+</sup>(イオン半径r=0.95 Å)はK<sup>+</sup>(r=1.33 Å)はよりも小さく、なぜK<sup>+</sup>を透過してNa<sup>+</sup>を透過させないのか説明がつかない。カリウムチャネルのこのカリウム選択的透過機構はこのチャネルがもつ小孔の最も狭い領域、イオン選択フィルターの構造に関係がある<ref name=ref3 /><ref name=ref4 />。イオンは水分子と相互作用(水和)することで水に溶けている(図3a)。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(図3a, b)。小孔の大きさがK<sup>+</sup>イオンに適切であり、K<sup>+</sup>イオンは4つサブユニットのカルボニル基から均等に作用を受け、安定な8水和様構造をとり安定する(図3a)<ref><pubmed>11689935</pubmed></ref><ref><pubmed>11689936</pubmed></ref>。一方、Na<sup>+</sup>イオンはイオン半径が小さくK<sup>+</sup>イオンのようには相互作用が出来ず、K<sup>+</sup>イオンに比べ不安定に存在する。このような違いがK<sup>+</sup>イオンの選択的な透過に寄与していると考えられている。この機構の説は最適合close-fit説とよばれる。<br>カリウムチャネルの選択フィルターは12 Åほどの長さがあり結晶構造では4つのK<sup>+</sup>イオン結合部位が認められる(図3b)。しかし近接した結合部位にK<sup>+</sup>イオンが同時に結合するとイオン間で電気的な反発がおこり不安定であると考えられる。そのため4つの部位を細胞外側から1-4サイトとすると、K<sup>+</sup>イオンとチャネルの結合には[1,3]サイトに結合した状態と[2,4]サイトに結合した状態があると考えられる(図3c)。また、フィルター内に複数のイオンが同時に入ることによってイオン間に静電気的反発力が発生し、玉突き状態になることが早いイオン透過に寄与していると考えられている<ref><pubmed>11689935</pubmed></ref>。<br>イオンは膜を透過しようとするとボルンエネルギーというエネルギー障壁を超える必要がある。小孔はそのボルンエネルギーを低くする役目がある。もし小孔が均一な内径の形状であるとすると、ボルンエネルギーは均一に低下し、ボルンエネルギーの極大値は膜の中央部分にくる。結晶構造で存在が知られたイオンチャネルの内腔は大量の水分子で満たされている(図2)。またポアヘリックスがそのC末端側を中心腔の内部に向けていることで、αヘリックスの双極子モーメントが空洞内に陽イオンが留まりやすい環境を作り出す。こういった中心腔の存在により、本来ボルンエネルギーの高いはずの膜中央部でイオンは水和して安定に存在できる。一方で、イオン透過経路を形成するチャネル壁は疎水性の残基で裏打ちされている。これにより水和したイオンはイオン壁と強い相互作用をすることなく、言い換えればポテンシャルの谷間に落ち込んで出られなくなることなく、細胞質からイオン選択フィルターまでの早いイオン流を確保している。生理的な実験とこれまでに述べたようなイオン透過経路の構造から、膜にかけられた外部電位によるポア内電場のおよそ80%は選択フィルターで生じていると推測される(図2)。<br>カリウムチャネルの結晶構造解析に成功し、イオンチャネルの本質的特徴の一つである選択的イオン透過機構の謎を解明したロデリックマッキノンは2003年ノーベル化学賞を受賞している。  
[[Image:KCh fig3.png|thumb|right|369x344px|'''図3.カリウムチャネルの選択的イオン透過機構の構造基盤'''<br>a, イオンは水分子と相互作用(水和)した状態で水に溶けている(上段)。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(下段)。b, カリウムチャネルのシグネチャ配列がイオン選択フィルターを形成する。カリウムは中心軸に沿ってフィルター内では4箇所の結合部位に存在する。c,4本のペプチド主鎖から提供された酸素原子が5つの回転対称な平面を構成する。カリウム(緑丸)と水(赤丸)は交互に一列配置しているイオン透過過程のモデル。カリウムの[1,3][2,4]配置では上下の平面由来の8つの酸素原子と配位しており、中間遷移状態では同一平面の4つの酸素原子および上下の2つの水分子と配位している。いづれの配位結合もエネルギー的にはほぼ等価であり、これがカリウムのスムーズな移動を保証する。 ]]イオンチャネルの電気生理学的な解析によって、単一チャネル電流を定量的に記録することが可能である。この方法によって単一のイオンチャネルを透過するイオンの速度を見積もることが出来る。この実験から、カリウムチャネルではK<sup>+</sup>イオンがNa<sup>+</sup>イオンよりも1000倍ほど透過性が高いことが知られている(一価陽イオンの選択性序列は K<sup>+</sup>&gt;Rb<sup>+</sup>&gt;Cs<sup>+</sup>&gt;Na<sup>+</sup>&gt;Li<sup>+</sup>。これはEisenman IV型であり、イオン選択フィルターがやや弱い静電場をもつことを示唆する)。しかも、開いた小孔を電気化学的な差に従って、イオンの水溶液中の拡散速度に匹敵する程の、1秒間に数百万個ものイオンが通過することが分かっている(単一イオンチャネルコンダクタンスが数百pSに達すものもある)。つまりカリウムチャネルは極めて高いイオン選択性と非常に早いイオン透過速度という一見相容れない特性を両立する。特定のイオンを透過させる機構としては大きさによる分子フィルター機構がまず考えられる。しかしながら、イオン半径では、Na<sup>+</sup>(イオン半径r=0.95 Å)はK<sup>+</sup>(r=1.33 Å)はよりも小さく、なぜK<sup>+</sup>を透過してNa<sup>+</sup>を透過させないのか説明がつかない。カリウムチャネルのこのカリウム選択的透過機構はこのチャネルがもつ小孔の最も狭い領域、イオン選択フィルターの構造に関係がある<ref name=ref3 /><ref name=ref4 />。イオンは水分子と相互作用(水和)した状態で水に溶けている(図3a)。イオンチャネルの細いフィルター内に入る際に、イオンは水分子との相互作用をフィルターを形成するアミノ酸の酸素原子を含むカルボニル基との相互作用に置き換える(図3a, b)。小孔の大きさがK<sup>+</sup>イオンに適切であり、K<sup>+</sup>イオンは4つサブユニットのカルボニル基から均等に作用を受け、安定な8水和様構造をとり安定する(図3a, c)<ref><pubmed>11689935</pubmed></ref><ref><pubmed>11689936</pubmed></ref>。一方、Na<sup>+</sup>イオンはイオン半径が小さくK<sup>+</sup>イオンのようには相互作用が出来ず(図3a)、K<sup>+</sup>イオンに比べ不安定に存在する。このような違いがK<sup>+</sup>イオンの選択的な透過に寄与していると考えられている。この機構は最適合close-fit説とよばれる。<br>カリウムチャネルの選択フィルターは12 Åほどの長さがあり結晶構造では4つのK<sup>+</sup>イオン結合部位が認められる(図3b)。しかし近接した結合部位にK<sup>+</sup>イオンが同時に結合するとイオン間で電気的な反発がおこり不安定であると考えられる。そのため4つの部位を細胞外側から1-4サイトとすると、K<sup>+</sup>イオンとチャネルの結合には[1,3]サイトに結合した状態と[2,4]サイトに結合した状態があると考えられる(図3c)。また、フィルター内に複数のイオンが同時に入ることによってイオン間に静電気的反発力が発生し、玉突き状態になることが早いイオン透過に寄与していると考えられている<ref><pubmed>11689935</pubmed></ref>。<br>イオンは膜を透過しようとするとボルンエネルギーというエネルギー障壁を超える必要がある。小孔はそのボルンエネルギーを低くする役目がある。もし小孔が均一な内径の形状であるとすると、ボルンエネルギーは均一に低下し、ボルンエネルギーの極大値は膜の中央部分にくる。結晶構造で存在が知られたイオンチャネルの内腔は大量の水分子で満たされている(図2)。またポアヘリックスがそのC末端側を中心腔の内部に向けていることで、αヘリックスの双極子モーメントが空洞内に陽イオンが留まりやすい環境を作り出す。こういった中心腔の存在により、本来ボルンエネルギーの高いはずの膜中央部でイオンは水和して安定に存在できる。一方で、イオン透過経路を形成するチャネル壁は疎水性の残基で裏打ちされている。これにより水和したイオンはイオン壁と強い相互作用をすることなく、言い換えればポテンシャルの谷間に落ち込んで出られなくなることなく、細胞質からイオン選択フィルターまでの早いイオン流を確保している。生理的な実験とこれまでに述べたようなイオン透過経路の構造から、膜にかけられた外部電位によるポア内電場のおよそ80%は選択フィルターで生じていると推測される(図2)。<br>カリウムチャネルの結晶構造解析に成功し、イオンチャネルの本質的特徴の一つである選択的イオン透過機構の謎を解明したロデリックマッキノンは2003年ノーベル化学賞を受賞している。  


<br>  
<br>  
39行目: 39行目:
== Ca活性化カリウムチャネル  ==
== Ca活性化カリウムチャネル  ==


Ca活性化カリウム(KCa)チャネルは細胞質のCa<sup>2+</sup>濃度上昇によって活性が増加するカリウムチャネルである<ref><pubmed>12678784</pubmed></ref><ref><pubmed>15378036</pubmed></ref><ref name=ref13><pubmed>21942705</pubmed></ref>。シングルチャネルコンダクタンスの違いから大(Big)コンダクタンスカルシウム活性化カリウム(BK)チャネルと小(Small)コンダクタンスカルシウム活性化カリウム(SK)チャネル、そしてBKチャネルとIKチャネルの中間のコンダクタンスを持つ中間(Intermediate)コンダクタンスカルシウム活性化カリウム(IK)チャネルに分類されている。BKチャネルは電位依存的な活性化がおこり、アミノ酸の相同性の面からも電位依存性カリウムチャネルに分類されることも多いが、本項ではKCaチャネルの項目として扱う。BKチャネルにCa<sup>2+</sup>が結合することで電位依存的な活性化の特性が影響をうける。一方、IK、SKチャネルは電位非依存的であるが、細胞内Ca<sup>2+</sup>濃度上昇(100-600 nM)によって開口する。この機構には細胞内カルモデュリン(CaM)が必要である。<br>サブユニットの構造としてはKvチャネルと同様に六回膜貫通領域と一つのP領域を持つ6TM型である。SK、IKチャネルサブユニット(KCNN1-3, or SK1-4)はS4に正電荷を帯びたアミノ酸が揃っておらず、機能的に電位非依存的であることに関連する。またS6のC末端側にCaMに結合する領域をもつ。一方、哺乳類のBKチャネル[KCNMA1, MaxiK or Slo1(ショウジョウバエのslowpoke murtantから見つかったことに由来)]はS1-S6に加えN末端側にさらにS0膜貫通領域をもつ。S4が電位センサーの中心として機能し、C末端に二つのRCK(Regulators of the K conductance)領域はCa<sup>2+</sup>依存的な活性化機構に重要な役割を果す。これらはすべて四量体を形成しチャネルを構成する。BKチャネルのβサブユニットSlob(slowpoke channel binding protein)も同定されている。<br>BKチャネルと同じsloサブファミリーに属するSlo2(Slo2.1, 2.2)チャネルはCa<sup>2+</sup>によってではなく、Na<sup>+</sup>によって活性化される。このチャネルは神経細胞などで観察されるNa活性化カリウムチャネルの分子実体であると考えられている。  
Ca活性化カリウム(KCa)チャネルは細胞質のCa<sup>2+</sup>濃度上昇によって活性が増加するカリウムチャネルである<ref><pubmed>12678784</pubmed></ref><ref><pubmed>15378036</pubmed></ref><ref name=ref13><pubmed>21942705</pubmed></ref>。シングルチャネルコンダクタンスの違いから大(Big)コンダクタンスカルシウム活性化カリウム(BK)チャネルと小(Small)コンダクタンスカルシウム活性化カリウム(SK)チャネル、そしてBKチャネルとIKチャネルの中間のコンダクタンスを持つ中間(Intermediate)コンダクタンスカルシウム活性化カリウム(IK)チャネルに分類されている。BKチャネルは電位依存的な活性化がおこり、アミノ酸の相同性の面からも電位依存性カリウムチャネルに分類されることも多いが、本項ではKCaチャネルの項目で扱う。BKチャネルにCa<sup>2+</sup>が結合することで電位依存的な活性化の特性が影響をうける。一方、IK、SKチャネルは電位非依存的であるが、細胞内Ca<sup>2+</sup>濃度上昇(100-600 nM)によって開口する。この機構には細胞内カルモデュリン(CaM)が必要である。<br>サブユニットの構造としてはKvチャネルと同様に六回膜貫通領域と一つのP領域を持つ6TM型である。SK、IKチャネルサブユニット(KCNN1-3, or SK1-4)はS4に正電荷を帯びたアミノ酸が揃っておらず、機能的に電位非依存的であることに関連する。またS6のC末端側にCaMに結合する領域をもつ。一方、哺乳類のBKチャネル[KCNMA1, MaxiK or Slo1(ショウジョウバエのslowpoke murtantから見つかったことに由来)]はS1-S6に加えN末端側にさらにS0膜貫通領域をもつ。S4が電位センサーの中心として機能し、C末端の二つのRCK(Regulators of the K conductance)領域はCa<sup>2+</sup>依存的な活性化機構に重要な役割を果す。これらはすべて四量体を形成しチャネルを構成する。BKチャネルのβサブユニットSlob(slowpoke channel binding protein)も同定されている。<br>BKチャネルと同じsloサブファミリーに属するSlo2(Slo2.1, 2.2)チャネルはCa<sup>2+</sup>によってではなく、Na<sup>+</sup>によって活性化される。このチャネルは神経細胞などで観察されるNa活性化カリウムチャネルの分子実体であると考えられている。  


== 内向き整流性カリウムチャネル  ==
== 内向き整流性カリウムチャネル  ==
76

回編集

案内メニュー