「位相コーディング」の版間の差分
細編集の要約なし |
細編集の要約なし |
||
7行目: | 7行目: | ||
== 位相コーディングとは == | == 位相コーディングとは == | ||
[[ファイル:Sato Phase Coding Fig1.png|サムネイル|'''図1. 位相コーディング''']] | |||
[[ファイル:Sato Phase Coding Fig2.png|サムネイル|'''図2. 位相コーディングのさまざまな時間発展'''<br>'''(a)'''位相が進む、'''(b)''' 位相は一定、'''(c)''' 特定の位相構造がない。]] | |||
神経細胞の活動によって何らかの事象(例えば、感覚器への刺激の強さ)を表す方法を神経コーディング(神経符号化)と呼ぶ。神経コーディングは、発火の頻度で情報を表す発火頻度符号化(rate coding)、発火タイミングの時間構造で情報を表す時間符号化(temporal coding)などに分類され、位相コーディングは時間符号化の一種である。 | |||
局所集団電位として計測される神経細胞の集団活動は、しばしば明瞭なリズム活動を示す。位相コーディングでは神経細胞の発火が集団電位のどの位相で起こったかによって情報を表す('''図1''')。位相コーディングとみられる現象は、海馬、大脳皮質、嗅球などで観測されている。これらの観測では、位相コーディングが関わる集団電位は、主にδ波やθ波などの低周波数帯域であることが多い。一方、それぞれの現象は、位相コーディングの時間発展の構造が異なることから('''図2''')、別個の生成機序をもつ可能性がある。 | |||
== 具体例 == | == 具体例 == | ||
16行目: | 18行目: | ||
=== 大脳皮質 === | === 大脳皮質 === | ||
サルが順に提示される2つの画像とその順序を覚えるワーキングメモリ課題を行うとき、前頭前野には記憶保持の期間に画像と関連して持続的に活動する神経細胞が見つかる。このとき、集団電位(32Hz中心)に対する発火の位相タイミングは、第1画像に関する神経細胞は位相進みで、第2画像に関する神経細胞は位相遅れとなることが報告されている ('''図2b''') <ref name=Siegel2009><pubmed>19926847</pubmed></ref> 。これは、記憶対象の時間順序の記憶が、集団電位の各リズムにおける神経細胞の順序的な発火により保持されることを示唆しており、位相コーディングの一種といえる。このような位相コーティングはLismanらが提案しているワーキングメモリのモデル <ref name=Lisman1995><pubmed>7878473</pubmed></ref> <ref name=Jensen2005><pubmed>15667928</pubmed></ref>と合致する。ただし、モデルはθ波を仮定しているが、同現象では32Hz帯域であり、集団電位の帯域が異なる。 | |||
自然動画に対する麻酔サルの第一次視覚野 <ref name=Montemurro2008><pubmed>18328702</pubmed></ref> 、および自然音に対する覚醒サルの聴覚野 <ref name=Kayser2009><pubmed>19249279</pubmed></ref> では、集団電位(特にδ帯など低周波帯域)に対する発火位相が入力刺激に関する情報を持つことが示されている。この位相コーディングでは、海馬の位相コーディングとは異なり、必ずしも時間連続的な位相発火をするわけではない('''図2c''')。生成メカニズムとしては、神経細胞群が入力や集団電位のゆらぎに対して定型の発火パターンを生む性質 <ref name=Tiesinga2008><pubmed>18200026</pubmed></ref> が関わると考えられる。 | |||
=== 嗅球 === | === 嗅球 === | ||
マウスが匂いを嗅ぐとき、その吸気は3Hzなどで周期的に起こり(スニッフィング)、糸球体の神経細胞も同周波数帯で周期的に活動する。これらの神経細胞は匂いに応じてそれぞれ異なる位相で発火し、異なる匂いについて特有の位相発火パターンが現れる。これらの位相発火パターンは匂い種類を表すのに役立つことが示されている <ref name=Iwata2017><pubmed>29216451</pubmed></ref> 。 | |||
==機能== | ==機能== | ||
神経細胞集団で位相コーディングが用いられた場合、特定の神経集団群についてのみ神経同期活動(neural synchronization)が起こる。このため、神経同期活動に期待される機能 <ref name=Buzsaki2004><pubmed>15218136</pubmed></ref> 、例えば、シナプス可塑性、神経活動のバインディング <ref name=Engel2001><pubmed>11164732</pubmed></ref> 、セルアセンブリの形成 <ref name=Harris2005><pubmed>15861182</pubmed></ref> 、神経活動の選択的伝搬 <ref name=Fries2005><pubmed>16150631</pubmed></ref> などとも関わりがあると考えられる。一方、位相コーディングに特有の機能としては、神経活動の時系列パターン学習への寄与が考えられる。位相コーディングでは、複数の神経細胞の発火が、一定の時間順序を保ったまま、周期毎に繰り返し起こる。この時間幅はスパイクタイミング依存可塑性 (spike timing-dependent plasticity; STDP)の時間幅とのの類似があり、一方向的なシナプス可塑性を促すのに都合がよい。これは時間順序の記憶メカニズムの重要な手明かりである。 | |||
==位相―振幅カップリング== | ==位相―振幅カップリング== | ||
37行目: | 39行目: | ||
* [[セルアセンブリ]] | * [[セルアセンブリ]] | ||
* [[細胞外記録]] | * [[細胞外記録]] | ||
==参考文献== | ==参考文献== | ||
<references /> | <references /> |
2021年12月17日 (金) 16:17時点における版
佐藤直行 公立はこだて未来大学・複雑系知能学科
英: Phase coding
位相コーディングとは、神経細胞の活動電位(発火)によって表される情報が、集団電位リズムの位相に対する発火タイミングとして表されることを指す。時間符号化(temporal coding)の一種であり、時間のなかでも特に位相が用いられることから、位相コーディングと呼ばれる。
位相コーディングとは
神経細胞の活動によって何らかの事象(例えば、感覚器への刺激の強さ)を表す方法を神経コーディング(神経符号化)と呼ぶ。神経コーディングは、発火の頻度で情報を表す発火頻度符号化(rate coding)、発火タイミングの時間構造で情報を表す時間符号化(temporal coding)などに分類され、位相コーディングは時間符号化の一種である。
局所集団電位として計測される神経細胞の集団活動は、しばしば明瞭なリズム活動を示す。位相コーディングでは神経細胞の発火が集団電位のどの位相で起こったかによって情報を表す(図1)。位相コーディングとみられる現象は、海馬、大脳皮質、嗅球などで観測されている。これらの観測では、位相コーディングが関わる集団電位は、主にδ波やθ波などの低周波数帯域であることが多い。一方、それぞれの現象は、位相コーディングの時間発展の構造が異なることから(図2)、別個の生成機序をもつ可能性がある。
具体例
海馬
1993年にO'KeefeとRecce [1]は、ラットが環境を歩くとき、集団電位θ波に対する場所細胞の発火タイミングの位相が、連続的に進むことを報告した(θ位相歳差;theta phase precession(図2a)。場所細胞はラットの環境における位置に依存して発火頻度が増減するが、発火頻度だけの情報よりも、発火位相の情報を用いた場合により正確にラットの環境位置を表すことができる[2]。また、異なる場所細胞が同時に活動すると、場所細胞が活動する順序で、かつ時間圧縮された位相発火パターンがして繰り返し表れるため、時系列表現として役立つと考えられた[3]。θ位相歳差は、嗅内野のグリッド細胞でも観測されている [4]。また、コウモリの海馬の集団電位は明瞭なリズム活動を持たないが、ラットと類似の位相コーディングが現れることが報告されている[5]。位相コーディングの生成メカニズムとしては、非対称的脱分極(asymmetric depolarization) [6]、振動の干渉 (oscillatory interference) [7]、ワーキングメモリ [8][9]、振動の引き込み[10][11]などが提案されている。
大脳皮質
サルが順に提示される2つの画像とその順序を覚えるワーキングメモリ課題を行うとき、前頭前野には記憶保持の期間に画像と関連して持続的に活動する神経細胞が見つかる。このとき、集団電位(32Hz中心)に対する発火の位相タイミングは、第1画像に関する神経細胞は位相進みで、第2画像に関する神経細胞は位相遅れとなることが報告されている (図2b) [12] 。これは、記憶対象の時間順序の記憶が、集団電位の各リズムにおける神経細胞の順序的な発火により保持されることを示唆しており、位相コーディングの一種といえる。このような位相コーティングはLismanらが提案しているワーキングメモリのモデル [13] [9]と合致する。ただし、モデルはθ波を仮定しているが、同現象では32Hz帯域であり、集団電位の帯域が異なる。
自然動画に対する麻酔サルの第一次視覚野 [14] 、および自然音に対する覚醒サルの聴覚野 [15] では、集団電位(特にδ帯など低周波帯域)に対する発火位相が入力刺激に関する情報を持つことが示されている。この位相コーディングでは、海馬の位相コーディングとは異なり、必ずしも時間連続的な位相発火をするわけではない(図2c)。生成メカニズムとしては、神経細胞群が入力や集団電位のゆらぎに対して定型の発火パターンを生む性質 [16] が関わると考えられる。
嗅球
マウスが匂いを嗅ぐとき、その吸気は3Hzなどで周期的に起こり(スニッフィング)、糸球体の神経細胞も同周波数帯で周期的に活動する。これらの神経細胞は匂いに応じてそれぞれ異なる位相で発火し、異なる匂いについて特有の位相発火パターンが現れる。これらの位相発火パターンは匂い種類を表すのに役立つことが示されている [17] 。
機能
神経細胞集団で位相コーディングが用いられた場合、特定の神経集団群についてのみ神経同期活動(neural synchronization)が起こる。このため、神経同期活動に期待される機能 [18] 、例えば、シナプス可塑性、神経活動のバインディング [19] 、セルアセンブリの形成 [20] 、神経活動の選択的伝搬 [21] などとも関わりがあると考えられる。一方、位相コーディングに特有の機能としては、神経活動の時系列パターン学習への寄与が考えられる。位相コーディングでは、複数の神経細胞の発火が、一定の時間順序を保ったまま、周期毎に繰り返し起こる。この時間幅はスパイクタイミング依存可塑性 (spike timing-dependent plasticity; STDP)の時間幅とのの類似があり、一方向的なシナプス可塑性を促すのに都合がよい。これは時間順序の記憶メカニズムの重要な手明かりである。
位相―振幅カップリング
集団電位γ波は主に興奮性細胞の局所集団発火を反映することから[22]、位相コーディングは、集団電位における周波数間カップリング(cross-frequency coupling)[23]の一種である、位相―振幅カップリング(phase amplitude coupling)との関わりが深い。位相―振幅カップリングとは、何らかの事象に関連して、早い周波数帯の集団電位リズム(ここではγ波)のパワーが、低い周波数帯のリズム(例えば、θ波)の特定の位相で増大する現象を指す。これまでに、θ-γカップリング(theta gamma coupling)が時間順序を含むワーキングメモリ[24][25] やエピソード記憶[26]に関わること、 また、α―γカップリング(alpha gamma coupling)が空間のワーキングメモリ[27]や視覚処理 [28] に関わることなどが議論されている。どの脳部位が、どのような事象に関して、どの周波数帯域の集団電位リズムを用いるかは、位相コーディングと位相―振幅カップリングに共通する課題である。脳大域回路における周波数依存的な部位間連動[29] とも関わりがある可能性がある。
関連項目
参考文献
- ↑
O'Keefe, J., & Recce, M.L. (1993).
Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317-30. [PubMed:8353611] [WorldCat] [DOI] - ↑
Jensen, O., & Lisman, J.E. (2000).
Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. Journal of neurophysiology, 83(5), 2602-9. [PubMed:10805660] [WorldCat] [DOI] - ↑
Skaggs, W.E., McNaughton, B.L., Wilson, M.A., & Barnes, C.A. (1996).
Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149-72. [PubMed:8797016] [WorldCat] [DOI] - ↑
Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.B., & Moser, E.I. (2008).
Hippocampus-independent phase precession in entorhinal grid cells. Nature, 453(7199), 1248-52. [PubMed:18480753] [WorldCat] [DOI] - ↑
Eliav, T., Geva-Sagiv, M., Yartsev, M.M., Finkelstein, A., Rubin, A., Las, L., & Ulanovsky, N. (2018).
Nonoscillatory Phase Coding and Synchronization in the Bat Hippocampal Formation. Cell, 175(4), 1119-1130.e15. [PubMed:30318145] [WorldCat] [DOI] - ↑
Mehta, M.R., Lee, A.K., & Wilson, M.A. (2002).
Role of experience and oscillations in transforming a rate code into a temporal code. Nature, 417(6890), 741-6. [PubMed:12066185] [WorldCat] [DOI] - ↑
Burgess, N. (2008).
Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus, 18(12), 1157-74. [PubMed:19021256] [PMC] [WorldCat] [DOI] - ↑
Jensen, O., & Lisman, J.E. (1996).
Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & memory (Cold Spring Harbor, N.Y.), 3(2-3), 279-87. [PubMed:10456097] [WorldCat] [DOI] - ↑ 9.0 9.1
Jensen, O., & Lisman, J.E. (2005).
Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in neurosciences, 28(2), 67-72. [PubMed:15667928] [WorldCat] [DOI] - ↑
Yamaguchi, Y. (2003).
A theory of hippocampal memory based on theta phase precession. Biological cybernetics, 89(1), 1-9. [PubMed:12836028] [WorldCat] [DOI] - ↑
Yamaguchi, Y., Sato, N., Wagatsuma, H., Wu, Z., Molter, C., & Aota, Y. (2007).
A unified view of theta-phase coding in the entorhinal-hippocampal system. Current opinion in neurobiology, 17(2), 197-204. [PubMed:17379502] [WorldCat] [DOI] - ↑
Siegel, M., Warden, M.R., & Miller, E.K. (2009).
Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21341-6. [PubMed:19926847] [PMC] [WorldCat] [DOI] - ↑
Lisman, J.E., & Idiart, M.A. (1995).
Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science (New York, N.Y.), 267(5203), 1512-5. [PubMed:7878473] [WorldCat] [DOI] - ↑
Montemurro, M.A., Rasch, M.J., Murayama, Y., Logothetis, N.K., & Panzeri, S. (2008).
Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current biology : CB, 18(5), 375-80. [PubMed:18328702] [WorldCat] [DOI] - ↑
Kayser, C., Montemurro, M.A., Logothetis, N.K., & Panzeri, S. (2009).
Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597-608. [PubMed:19249279] [WorldCat] [DOI] - ↑
Tiesinga, P., Fellous, J.M., & Sejnowski, T.J. (2008).
Regulation of spike timing in visual cortical circuits. Nature reviews. Neuroscience, 9(2), 97-107. [PubMed:18200026] [PMC] [WorldCat] [DOI] - ↑
Iwata, R., Kiyonari, H., & Imai, T. (2017).
Mechanosensory-Based Phase Coding of Odor Identity in the Olfactory Bulb. Neuron, 96(5), 1139-1152.e7. [PubMed:29216451] [WorldCat] [DOI] - ↑
Buzsáki, G., & Draguhn, A. (2004).
Neuronal oscillations in cortical networks. Science (New York, N.Y.), 304(5679), 1926-9. [PubMed:15218136] [WorldCat] [DOI] - ↑
Engel, A.K., & Singer, W. (2001).
Temporal binding and the neural correlates of sensory awareness. Trends in cognitive sciences, 5(1), 16-25. [PubMed:11164732] [WorldCat] [DOI] - ↑
Harris, K.D. (2005).
Neural signatures of cell assembly organization. Nature reviews. Neuroscience, 6(5), 399-407. [PubMed:15861182] [WorldCat] [DOI] - ↑
Fries, P. (2005).
A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10), 474-80. [PubMed:16150631] [WorldCat] [DOI] - ↑
Fries, P., Nikolić, D., & Singer, W. (2007).
The gamma cycle. Trends in neurosciences, 30(7), 309-16. [PubMed:17555828] [WorldCat] [DOI] - ↑
Canolty, R.T., & Knight, R.T. (2010).
The functional role of cross-frequency coupling. Trends in cognitive sciences, 14(11), 506-15. [PubMed:20932795] [PMC] [WorldCat] [DOI] - ↑
Lisman, J.E., & Jensen, O. (2013).
The θ-γ neural code. Neuron, 77(6), 1002-16. [PubMed:23522038] [PMC] [WorldCat] [DOI] - ↑
Heusser, A.C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016).
Episodic sequence memory is supported by a theta-gamma phase code. Nature neuroscience, 19(10), 1374-80. [PubMed:27571010] [PMC] [WorldCat] [DOI] - ↑
Nyhus, E., & Curran, T. (2010).
Functional role of gamma and theta oscillations in episodic memory. Neuroscience and biobehavioral reviews, 34(7), 1023-35. [PubMed:20060015] [PMC] [WorldCat] [DOI] - ↑
Roux, F., & Uhlhaas, P.J. (2014).
Working memory and neural oscillations: α-γ versus θ-γ codes for distinct WM information? Trends in cognitive sciences, 18(1), 16-25. [PubMed:24268290] [WorldCat] [DOI] - ↑
Jensen, O., Gips, B., Bergmann, T.O., & Bonnefond, M. (2014).
Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends in neurosciences, 37(7), 357-69. [PubMed:24836381] [WorldCat] [DOI] - ↑
Siegel, M., Donner, T.H., & Engel, A.K. (2012).
Spectral fingerprints of large-scale neuronal interactions. Nature reviews. Neuroscience, 13(2), 121-34. [PubMed:22233726] [WorldCat] [DOI]