「S100タンパク質」の版間の差分
細 (→機能) |
細編集の要約なし |
||
(同じ利用者による、間の1版が非表示) | |||
1行目: | 1行目: | ||
<div align="right"> | |||
<font size="+1">[http://researchmap.jp/hajimehirase 平瀬 肇]</font><br> | |||
''独立行政法人理化学研究所 脳科学総合研究センター''<br> | |||
DOI:<selfdoi /> 原稿受付日:2012年3月5日 原稿完成日:2012年5月23日<br> | |||
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br> | |||
</div> | |||
{{Pfam_box | {{Pfam_box | ||
| Symbol = S_100 | | Symbol = S_100 | ||
37行目: | 44行目: | ||
}} | }} | ||
{{box|text= | |||
S100 タンパク質は、[[wikipedia:JA:EFハンド|EFハンド]]型[[カルシウム]]結合性ドメイン(loop-helix-loop)をもつ、分子量が8~14kD程度の低分子量のタンパク質群である。B.W. Mooreにより、1965年にウシ脳から分離された。現在までに20種類以上のサブファミリーが同定されている。S100という名称は「中性硫酸アンモニウムに完全に(100%)溶ける(Soluble)」という特性に由来している。現在のところS100A1~S100A18、S100B、S100P、S100Z、Calbindin D<sub>9k</sub> (S100G)、Profilaggrin、Trychohyalin、Repetinに分類される。S100Bは特に[[脳]]での発現が高いことが知られている。[[wikipedia:JA:哺乳類|哺乳類]]の[[中枢神経]]系では、[[グリア細胞]]の一種である[[アストロサイト]]に選択的に発現する。末梢神経系ではグリア細胞の[[シュワン細胞]]に発現する。S100タンパク質群の機能は、細胞内カルシウム濃度を一定に保つバッファーとしての機能以外にも多岐にまたがると考えられており、未解明な部分が多い。またS100タンパク質は細胞内のシグナル伝達のみならず、細胞外にも分泌される事が知られており、実際に[[wikipedia:JA:血漿|血漿]]や[[脳脊髄液]]からも検出される。培養細胞系では、細胞外のS100Bは神経細胞の生存にかかわる[[栄養因子]]として働くことが提唱されている。 | S100 タンパク質は、[[wikipedia:JA:EFハンド|EFハンド]]型[[カルシウム]]結合性ドメイン(loop-helix-loop)をもつ、分子量が8~14kD程度の低分子量のタンパク質群である。B.W. Mooreにより、1965年にウシ脳から分離された。現在までに20種類以上のサブファミリーが同定されている。S100という名称は「中性硫酸アンモニウムに完全に(100%)溶ける(Soluble)」という特性に由来している。現在のところS100A1~S100A18、S100B、S100P、S100Z、Calbindin D<sub>9k</sub> (S100G)、Profilaggrin、Trychohyalin、Repetinに分類される。S100Bは特に[[脳]]での発現が高いことが知られている。[[wikipedia:JA:哺乳類|哺乳類]]の[[中枢神経]]系では、[[グリア細胞]]の一種である[[アストロサイト]]に選択的に発現する。末梢神経系ではグリア細胞の[[シュワン細胞]]に発現する。S100タンパク質群の機能は、細胞内カルシウム濃度を一定に保つバッファーとしての機能以外にも多岐にまたがると考えられており、未解明な部分が多い。またS100タンパク質は細胞内のシグナル伝達のみならず、細胞外にも分泌される事が知られており、実際に[[wikipedia:JA:血漿|血漿]]や[[脳脊髄液]]からも検出される。培養細胞系では、細胞外のS100Bは神経細胞の生存にかかわる[[栄養因子]]として働くことが提唱されている。 | ||
}} | |||
== 構造 == | == 構造 == | ||
60行目: | 69行目: | ||
<references /> | <references /> | ||
2014年6月2日 (月) 16:04時点における最新版
平瀬 肇
独立行政法人理化学研究所 脳科学総合研究センター
DOI:10.14931/bsd.742 原稿受付日:2012年3月5日 原稿完成日:2012年5月23日
担当編集委員:柚崎 通介(慶應義塾大学 医学部生理学)
S-100/ICaBP type calcium binding domain | |||||||||
---|---|---|---|---|---|---|---|---|---|
Structure of the S100B protein. Based on PyMOL rendering of PDB 1b4c. | |||||||||
Identifiers | |||||||||
Symbol | S_100 | ||||||||
Pfam | PF01023 | ||||||||
InterPro | IPR013787 | ||||||||
PROSITE | PDOC00275 | ||||||||
SCOP | 1cnp | ||||||||
SUPERFAMILY | 1cnp | ||||||||
|
S100 タンパク質は、EFハンド型カルシウム結合性ドメイン(loop-helix-loop)をもつ、分子量が8~14kD程度の低分子量のタンパク質群である。B.W. Mooreにより、1965年にウシ脳から分離された。現在までに20種類以上のサブファミリーが同定されている。S100という名称は「中性硫酸アンモニウムに完全に(100%)溶ける(Soluble)」という特性に由来している。現在のところS100A1~S100A18、S100B、S100P、S100Z、Calbindin D9k (S100G)、Profilaggrin、Trychohyalin、Repetinに分類される。S100Bは特に脳での発現が高いことが知られている。哺乳類の中枢神経系では、グリア細胞の一種であるアストロサイトに選択的に発現する。末梢神経系ではグリア細胞のシュワン細胞に発現する。S100タンパク質群の機能は、細胞内カルシウム濃度を一定に保つバッファーとしての機能以外にも多岐にまたがると考えられており、未解明な部分が多い。またS100タンパク質は細胞内のシグナル伝達のみならず、細胞外にも分泌される事が知られており、実際に血漿や脳脊髄液からも検出される。培養細胞系では、細胞外のS100Bは神経細胞の生存にかかわる栄養因子として働くことが提唱されている。
構造
S100タンパク質群は、単量体として二つのEFハンド型カルシウム結合ドメインを有する。この二つのカルシウム結合ドメインは、それぞれ構造とカルシウム結合能が異なる。C末端側の12アミノ酸残基からなるリンカーループはカルモジュリンおよびトロポニン-Cと似たカルシウム結合様式を持ち、解離定数Kdは10-50nM程度であるとされている。一方、N末端側の14アミノ酸残基からなる疑似正準的なEF-handリンカーループはKd=200-500µM程度の比較的弱いカルシウム結合能を持つ。ほとんどのS100タンパク質は生体内では二つの同一ポリペプチドが非共有結合で結合されている二量体として存在する。
サブタイプ
現在のところS100A1~S100A18、S100B、S100P、S100Z、Calbindin D9k (S100G)、Profilaggrin、Trychohyalin、Repetinに分類される。
分布
S100タンパク質は、その種類により生体内での局在様式が異なる。例えばS100A1は平滑筋の細胞質にある一方、100A2は平滑筋の核内に存在する。S100Pは胎盤の発現が高い。S100Bは脳での発現が顕著に認められ、中でもグリア細胞の一種であるアストロサイトに選択的に発現する。S100Bはアストロサイトにより分泌され、細胞外空間や血中に拡散する。脳損傷および炎症にて、血清中S100B濃度は高くなり、S100Bの血清濃度は神経疾患の一次的な診断材料となる。血清中S100B濃度は、てんかんおよび統合失調症患者では高くなる。また、S100B濃度の上昇は血液脳関門の損傷をも示唆し、診断ツールとしての有用性が広く認められている。
機能
S100タンパク質群は、カルシウムホメオスタシス、タンパク質のリン酸化の調節(例:、P53やTauタンパク質のリン酸化の阻害、タンパク質リン酸化酵素活性)、細胞成長、細胞運動性、細胞周期調節、翻訳、細胞分化、細胞生存など、多様な機能をもつことが提唱されている[1] [2] [3]。また、様々な疾患に関係するとされており、乳がんやメラノーマを含む様々な癌細胞に発現する。また、S100タンパク質は、炎症マーカーとしても利用される[4]。
S100Bは、神経突起および軸索成長、メラノーマ細胞増殖、プロテインキナーゼC依存的なリン酸化、微小管の重合に関与しているとされている。また、培養神経細胞を使用した実験では、神経細胞生存に重要であるという報告もある[5] [6]。しかし、S100Bノックアウト動物の神経回路形成には重篤な欠損がない[7]ことから、神経栄養因子としての機能は限定的であるという可能性も否めない。細胞外でのS100Bの標的としては終末糖化産物受容体(RAGE)が知られている[8]。マウスを使用した実験で、S100Bの分泌は神経活動依存的に起こり、脳波活動に影響をもたらすことが報告されている[9]。
参考文献
- ↑
Santamaria-Kisiel, L., Rintala-Dempsey, A.C., & Shaw, G.S. (2006).
Calcium-dependent and -independent interactions of the S100 protein family. The Biochemical journal, 396(2), 201-14. [PubMed:16683912] [PMC] [WorldCat] [DOI] - ↑
Donato, R. (2003).
Intracellular and extracellular roles of S100 proteins. Microscopy research and technique, 60(6), 540-51. [PubMed:12645002] [WorldCat] [DOI] - ↑
Sorci, G., Bianchi, R., Riuzzi, F., Tubaro, C., Arcuri, C., Giambanco, I., & Donato, R. (2010).
S100B Protein, A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovascular psychiatry and neurology, 2010. [PubMed:20827421] [PMC] [WorldCat] [DOI] - ↑
Sen, J., & Belli, A. (2007).
S100B in neuropathologic states: the CRP of the brain? Journal of neuroscience research, 85(7), 1373-80. [PubMed:17348038] [WorldCat] [DOI] - ↑
Van Eldik, L.J., Christie-Pope, B., Bolin, L.M., Shooter, E.M., & Whetsell, W.O. (1991).
Neurotrophic activity of S-100 beta in cultures of dorsal root ganglia from embryonic chick and fetal rat. Brain research, 542(2), 280-5. [PubMed:2029635] [WorldCat] [DOI] - ↑
Huttunen, H.J., Kuja-Panula, J., Sorci, G., Agneletti, A.L., Donato, R., & Rauvala, H. (2000).
Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. The Journal of biological chemistry, 275(51), 40096-105. [PubMed:11007787] [WorldCat] [DOI] - ↑
Nishiyama, H., Takemura, M., Takeda, T., & Itohara, S. (2002).
Normal development of serotonergic neurons in mice lacking S100B. Neuroscience letters, 321(1-2), 49-52. [PubMed:11872254] [WorldCat] [DOI] - ↑
Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., ..., & Schmidt, A.M. (1999).
RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell, 97(7), 889-901. [PubMed:10399917] [WorldCat] [DOI] - ↑
Sakatani, S., Seto-Ohshima, A., Shinohara, Y., Yamamoto, Y., Yamamoto, H., Itohara, S., & Hirase, H. (2008).
Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(43), 10928-36. [PubMed:18945900] [PMC] [WorldCat] [DOI]