「カルシニューリン」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
30行目: 30行目:


== ドメイン構造  ==
== ドメイン構造  ==
(編集部コメント:ドメイン構造の図示をお願い出来ないでしょうか?)
 カルシニューリンは 触媒サブユニットであるCalcineurin A (57-59 kDa)と、修飾サブユニットであれるCalcineurin B (19-20 kDa)からなる。それぞれ、3種(PPP3CA、PPP3CB、and PPP3CC)と2種(PPP3R1、PPP3R2)の遺伝子にコードされる。PPP3R2は精巣特異的発現とされているが、その他はubiquitousに発現する。PPP3CCも精巣特異的とされていたが、脳における発現が確認されている。ラット脳内ではPPP3CAの方がPPP3CBよりも豊富に発現している。


 Calcineurin A は、N末端より、触媒ドメイン・Calcineurin B 結合ドメイン・[[カルモジュリン]]結合ドメイン・自己抑制ドメイン(AID)からなる。触媒ドメインはPP2Aと49%、PP1と39%という高い相同性を持つ。
(編集部コメント:ドメイン構造の図示をお願い出来ないでしょうか?)  カルシニューリンは 触媒サブユニットであるカルシニューリン A (57-59 kDa)と、修飾サブユニットであれるカルシニューリン B (19-20 kDa)からなる。それぞれ、3種(PPP3CA、PPP3CB、and PPP3CC)と2種(PPP3R1、PPP3R2)の遺伝子にコードされる。PPP3R2は精巣特異的発現とされているが、その他はubiquitousに発現する。PPP3CCも精巣特異的とされていたが、脳における発現が確認されている。ラット脳内ではPPP3CAの方がPPP3CBよりも豊富に発現している。


 Calcineurin B はカルモジュリンと相同性があり、4つのCa<sup>2+</sup>結合ドメインである[[EF-hand]]を有し、N末端に[[ミリストイル化]]を受ける。Calcineurin Bの1つのCa<sup>2+</sup>結合ドメインは高親和性で(Kd = 10<sup>-7</sup> M)、その他は低親和性(Kd = 0.5 ~ 1 uM)であるが、カルモジュリンと異なり、Calcineurin Bは[[wikipedia:EDTA|EDTA]]存在下でもCalcineurin A に結合する。
 カルシニューリン A は、N末端より、触媒ドメイン・カルシニューリン B 結合ドメイン・[[カルモジュリン]]結合ドメイン・自己抑制ドメイン(AID)からなる。触媒ドメインはPP2Aと49%、PP1と39%という高い相同性を持つ。
 
 カルシニューリン B はカルモジュリンと相同性があり、4つのCa<sup>2+</sup>結合ドメインである[[EF-hand]]を有し、N末端に[[ミリストイル化]]を受ける。カルシニューリン Bの1つのCa<sup>2+</sup>結合ドメインは高親和性で(Kd = 10<sup>-7</sup> M)、その他は低親和性(Kd = 0.5 ~ 1 uM)であるが、カルモジュリンと異なり、カルシニューリン Bは[[wikipedia:EDTA|EDTA]]存在下でもカルシニューリン A に結合する。


==立体構造  ==
==立体構造  ==

2013年2月15日 (金) 09:56時点における版

Calcineurin
3LL8.png
Crystal structure of calcineurin in complex with AKAP79 peptide
Identifiers
Symbol CaN, CN, PP2B, ppp3, caln, ccn1, cna1, calna1
Pfam PF00149
Pfam clan CL0163
SCOP 1fjm
SUPERFAMILY 1fjm

英:Calcineurin 英略称:CaN, CN, caln, ccn1, cna1, calna1

同義語:Protein phosphatase 2B (PP2B), Protein phosphatase 3 (ppp3), calcium-dependent serine-threonine phosphatase

 カルシニューリンは、脳神経系に豊富に発現するカルシウム・カルモジュリン依存的セリン-スレオニン脱リン酸化酵素である。PP1/PP2A/カルシニューリンスーパーファミリーに属する[1] 脳神経系においては、シナプス刺激などによるカルシウムにより活性化され、NFATダイナミンIInhibitor-1(l-I)/DARPP-32tauCRTCGluA1FMRPBcl-2GABAA受容体といった多様な基質を脱リン酸化する。長期抑制長期増強などのシナプス可塑性、ひいては記憶学習や、神経突起伸長・細胞内カルシウム・遺伝子発現調節・アポトーシスの制御に関わるとされている。

カルシニューリンとは

 1978年にKleeらが初めて精製し[2]ホスホジエステラーゼの調節サブユニットとして報告し、カルシニューリン(calcineurin)と名付けられたが、その後1982年にCohenらによって脱リン酸化酵素であると同定された[3]哺乳類細胞においてCa2+により活性化される唯一の脱リン酸化酵素であり、脳神経系に豊富に発現する。進化的には、酵母からハエ・哺乳類に至るまで保存されている。

ドメイン構造

(編集部コメント:ドメイン構造の図示をお願い出来ないでしょうか?)  カルシニューリンは 触媒サブユニットであるカルシニューリン A (57-59 kDa)と、修飾サブユニットであれるカルシニューリン B (19-20 kDa)からなる。それぞれ、3種(PPP3CA、PPP3CB、and PPP3CC)と2種(PPP3R1、PPP3R2)の遺伝子にコードされる。PPP3R2は精巣特異的発現とされているが、その他はubiquitousに発現する。PPP3CCも精巣特異的とされていたが、脳における発現が確認されている。ラット脳内ではPPP3CAの方がPPP3CBよりも豊富に発現している。

 カルシニューリン A は、N末端より、触媒ドメイン・カルシニューリン B 結合ドメイン・カルモジュリン結合ドメイン・自己抑制ドメイン(AID)からなる。触媒ドメインはPP2Aと49%、PP1と39%という高い相同性を持つ。

 カルシニューリン B はカルモジュリンと相同性があり、4つのCa2+結合ドメインであるEF-handを有し、N末端にミリストイル化を受ける。カルシニューリン Bの1つのCa2+結合ドメインは高親和性で(Kd = 10-7 M)、その他は低親和性(Kd = 0.5 ~ 1 uM)であるが、カルモジュリンと異なり、カルシニューリン BはEDTA存在下でもカルシニューリン A に結合する。

立体構造

 1995年に、カルシニューリン(C末端のCaM結合ドメイン・AIDドメインを欠く)と FKBP12-FK506 との複合体の構造が発表された。 [4] [5]

酵素活性

 カルシニューリンの活性中心には、phosphataseコンセンサス配列であるDXH(X)n GDXXDR(X)m GNHD/E を含む。活性中心にはFe3+Zn2+錯体)が含まれる。酵素の活性化には Calcineurin B とCa2+/カルモジュリンの結合を必要とする。CaMKなどのCa2+/カルモジュリン依存性リン酸化酵素との類似性から、Ca2+/カルモジュリンの結合により自己抑制ドメイン(AID)が外れるなどの構造変化に基づく活性化メカニズムが唱えられている。 カルモジュリンによる、Ca2+依存的な酵素活性化は協同的である。(ヒル係数 = 2.8 - 3)[6]

阻害剤

 Cyclosporine AFK506は、それぞれ cyclophilinFKBP (FK506-binding protein) のimmunophilinと結合し、カルシニューリン活性を阻害する。免疫系で抗原提示細胞からT細胞への活性化、特にIL-2IL-4遺伝子発現調節を担う転写因子NFATを脱リン酸化して活性化することから[7]、cyclosporinA や FK506といったカルシニューリン阻害剤は免疫抑制剤として使用されてきた。その他、PP1、PP2Aの阻害剤であるオカダイン酸も高い濃度(~4 uM)では、カルシニューリン活性を阻害する。

脳神経系における役割

長期可塑性

 カルモジュリン存在下で活性化に必要なCa2+濃度は 数百nM (CaM濃度に依存) の領域であり、αCaMKIIなどのCa2+依存性酵素よりも親和性が高いためにLismanらによりLTDへの関与が示唆され[8]、それに合致する電気生理のデータも得られているが、必ずしもこの説を擁護する報告ばかりではない。以下は、LTDを引き起こすメカニズムの例である。[9]

  • PP1の活性を抑制する I-1/DARPP-32 のPKAによるリン酸化サイト(PP1の抑制作用に必須)を脱リン酸化することにより、間接的にPP1の活性を制御する。
  • GluA1のSer845の脱リン酸化(PKAと拮抗)によりLTDをひきおこす。
  • NMDA型グルタミン酸受容体の脱感作を促進する。

転写制御

 AKAP150 (ヒトAKAP79ホモログ) により、Ca2+チャネルの近傍にアンカリングされ[10]、カルシウム上昇に伴い、転写因子NFATcの脱リン酸化による移行・転写活性化を促す。また、CREBのコファクターであるCRTCを脱リン酸化し、CREBの活性を増強する。

小胞の内在化

 カルシニューリンはダイナミン I と結合し、エンドサイトーシス小胞を構成するタンパク質であるダイナミン、アンフィフィジンシナプトジャニンらを脱リン酸化することでシナプス小胞のエンドサイトーシスを促進する[11]。 また、NMDA型グルタミン酸受容体依存的なAMPA型グルタミン酸受容体の内在化を担う。

脳神経疾患とのかかわり

統合失調症

 カルシニューリン前脳特異的ノックアウトマウスは、ワーキングメモリー異常を含む、 統合失調症様の中間表現型を呈することが報告されている。 (文献をお願い致します)

ダウン症候群

 カルシニューリンはregulator of Calcineurin 1(RCAN1)、別名Down syndrome critical region gene 1DSCR1)と結合する。 (文献をお願い致します。また、このメカニズムは病態生理と関与するのか、具体的な御記述をお願い致します)

アルツハイマー病

 カルシニューリンは直接、或いは間接的にGSK3βtauのリン酸化状態を制御するとされる。 また、アストロサイトと神経細胞において、によるカルシニューリンとNFATのシグナリングに不調をきたすことが細胞毒性をひきおこす一因となる。 (文献をお願い致します)

関連項目

参考文献

  1. Rusnak, F., & Mertz, P. (2000).
    Calcineurin: form and function. Physiological reviews, 80(4), 1483-521. [PubMed:11015619] [WorldCat] [DOI]
  2. Klee, C.B., & Krinks, M.H. (1978).
    Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry, 17(1), 120-6. [PubMed:201280] [WorldCat] [DOI]
  3. Stewart, A.A., Ingebritsen, T.S., Manalan, A., Klee, C.B., & Cohen, P. (1982).
    Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS letters, 137(1), 80-4. [PubMed:6279434] [WorldCat] [DOI]
  4. Kissinger, C.R., Parge, H.E., Knighton, D.R., Lewis, C.T., Pelletier, L.A., Tempczyk, A., ..., & Moomaw, E.W. (1995).
    Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature, 378(6557), 641-4. [PubMed:8524402] [WorldCat] [DOI]
  5. Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A., Fitzgibbon, M.J., ..., & Navia, M.A. (1995).
    X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell, 82(3), 507-22. [PubMed:7543369] [WorldCat] [DOI]
  6. Stemmer, P.M., & Klee, C.B. (1994).
    Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry, 33(22), 6859-66. [PubMed:8204620] [WorldCat] [DOI]
  7. Crabtree, G.R., & Schreiber, S.L. (2009).
    SnapShot: Ca2+-calcineurin-NFAT signaling. Cell, 138(1), 210, 210.e1. [PubMed:19596245] [PMC] [WorldCat] [DOI]
  8. Lisman, J. (1989).
    A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9574-8. [PubMed:2556718] [PMC] [WorldCat] [DOI]
  9. Winder, D.G., & Sweatt, J.D. (2001).
    Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature reviews. Neuroscience, 2(7), 461-74. [PubMed:11433371] [WorldCat] [DOI]
  10. Coghlan, V.M., Perrino, B.A., Howard, M., Langeberg, L.K., Hicks, J.B., Gallatin, W.M., & Scott, J.D. (1995).
    Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science (New York, N.Y.), 267(5194), 108-11. [PubMed:7528941] [WorldCat] [DOI]
  11. Marks, B., & McMahon, H.T. (1998).
    Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Current biology : CB, 8(13), 740-9. [PubMed:9651678] [WorldCat] [DOI]


(執筆者:野中美応 担当編集委員:尾藤晴彦)