「位置情報」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
18行目: 18行目:
モルフォゲンにより器官内で多種類の細胞が生じる様子は、しばしば「フランス国旗」で表される4,10。これは、各細胞の分化方向の決定に濃度閾値(threshold)が存在することを前提にしており、濃度によって3つの異なる細胞が生じる様子をフランス国旗の青、白、赤の3色で表したものである(図1A)。このモデルは、濃度勾配を感知した各前駆細胞が、濃度に応じて3種類(実際にはそれ以上)の細胞に分化していく様子を表している。このことは、濃度依存的に発現する遺伝子が存在することを示している。さらに、隣接する領域に発現する遺伝子同士は互いにその発現を抑制する関係にあることも多い。このようにして、細胞外からの情報(濃度勾配)が細胞内制御機構(遺伝子の転写制御ネットワーク)に変換され、異なる種類の細胞(つまり図1Aの赤と白、白と青)の境界が明確になり、結果的に正確なパターン形成が作り上げられる6。
モルフォゲンにより器官内で多種類の細胞が生じる様子は、しばしば「フランス国旗」で表される4,10。これは、各細胞の分化方向の決定に濃度閾値(threshold)が存在することを前提にしており、濃度によって3つの異なる細胞が生じる様子をフランス国旗の青、白、赤の3色で表したものである(図1A)。このモデルは、濃度勾配を感知した各前駆細胞が、濃度に応じて3種類(実際にはそれ以上)の細胞に分化していく様子を表している。このことは、濃度依存的に発現する遺伝子が存在することを示している。さらに、隣接する領域に発現する遺伝子同士は互いにその発現を抑制する関係にあることも多い。このようにして、細胞外からの情報(濃度勾配)が細胞内制御機構(遺伝子の転写制御ネットワーク)に変換され、異なる種類の細胞(つまり図1Aの赤と白、白と青)の境界が明確になり、結果的に正確なパターン形成が作り上げられる6。
しかし、組織内で形成される濃度勾配は静的ではなく(つまり発生過程のある時期に突然形成され、それが永久に保存されるものではなく)、器官発生の進行と連動して経時的に変化し、維持されるものであるから、各細胞が暴露される濃度も時々刻々と変化し、それにつれて細胞の分化状態も変化しながら徐々にパターン形成が確立されて行く(図1B)。次項では、濃度勾配の形成と細胞の分化状態の変化の関係を記述する。
しかし、組織内で形成される濃度勾配は静的ではなく(つまり発生過程のある時期に突然形成され、それが永久に保存されるものではなく)、器官発生の進行と連動して経時的に変化し、維持されるものであるから、各細胞が暴露される濃度も時々刻々と変化し、それにつれて細胞の分化状態も変化しながら徐々にパターン形成が確立されて行く(図1B)。次項では、濃度勾配の形成と細胞の分化状態の変化の関係を記述する。
== 神経管の背腹軸に沿った領域の細分化とそれを制御するモルフォゲン ==
モルフォゲンの動的な濃度勾配の変化がよく解析されているのは、脊髄神経管の断面(背腹軸)におけるシグナル分子と領域決定の関係についてである。胚発生期の神経管には背腹軸に沿って多数の神経前駆領域、神経領域が出現する11,12 。(図2A)はその様子を模式的に表したもので、マウス10.5-11.5日胚、ニワトリ4-5日胚の脊髄レベルの神経管の断面を作成するとほぼ同様の様子が観察される。図中のdP1-dP6、p0-p3、pMNの各領域にはそれぞれ特有の性質を持つ神経前駆細胞が配置される。各前駆領域の細胞はさらに分化して、それぞれの前駆領域に対応する機能性の神経細胞(ニューロン)を産出する(dI1-dI6、V0-V3、MN:各神経細胞がもつ性質については13を参照)。
個々の領域を分子レベルで特徴付けることができるのは、領域特異的に発現するホメオボックス型またはbHLH型転写因子が同定されているためである(同定されている転写因子の一部を図2Aに掲載した:詳細については13を参照)。
これらの領域はどの個体でも配置が変わることがないため、「パターン」と呼ばれており、そのパターン決定は、RP(蓋板)やFP(底板)からそれぞれ分泌されるBMP、Wnt、ソニック・ヘッジホッグ(Sonic Hedgehog; Shh)といったモルフォゲンの濃度勾配によっている。つまり、これら各領域の細胞の分化方向はモルフォゲンの種類と濃度という位置情報によって決定されるのであり、その意味で神経管の背腹軸は位置情報を解析する上で良いモデル系である。