記憶想起

提供:脳科学辞典
2017年4月6日 (木) 09:46時点におけるWikiSysop (トーク | 投稿記録)による版 (ページの作成:「英語名:Memory Retrieval、Memory reactivation 鈴木 章円(富山大学医学薬学研究部(医学)生化学講座・助教) 横瀬 淳 (富山大...」)

(差分) ← 古い版 | 承認済み版 (差分) | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

英語名:Memory Retrieval、Memory reactivation

鈴木 章円(富山大学医学薬学研究部(医学)生化学講座・助教) 横瀬 淳 (富山大学医学薬学研究部(医学)生化学講座・特命助教) 井ノ口 馨(富山大学医学薬学研究部(医学)生化学講座・教授)


「記憶想起」とは一度覚えた記憶を「思い出す」プロセスのことを指す。「特定のものを認識しているにもかかわらず、その名前がなかなか思い出せない」などという気分に陥ることがあるが、これは記憶しているが想起ができないことを示している。さまざまな経験から得られた情報は、まず不安定化状態の短期記憶として形成され、その後、固定化のプロセスを経て、安定した状態の長期記憶として脳内に保存される。想起された記憶は再度不安定化状態となる場合があり、元の記憶を安定化状態の記憶として脳内に再保存するために再固定化のプロセスを誘導する。一方、記憶想起は元の記憶と相反する記憶を学習する消去学習(extinction)のプロセスを誘導することもある(図1)。

記憶想起のメカニズム

脳内には学習時の刺激に応答して活動するニューロン群が存在するが、それら活動したニューロン群は強いシナプス結合で結ばれ、セルアセンブリ(細胞集成体)を形成し、記憶はその中に符号化して蓄えられると想定されている。つまり記憶は、学習時に活動した特定のニューロンのセットという形で脳のなかに保存される。このような学習時に活動した特定のニューロン集団という形で脳内に残った物理的な痕跡のことを記憶痕跡(Memory engram)と呼び、2012年、利根川進らのグループにより記憶痕跡の物理的存在が示された[1]。何らかのきっかけでこのニューロン集団に属する一部のニューロンが活動すると、強いシナプス結合で結ばれたニューロン集団全体が活動し、その結果として記憶が想起されると考えられている(図2)。また、記憶は学習した当時とまったく同じ状況ではなくとも類似した状況など一部の手がかりでその記憶全体を想起することが可能である。このように不完全な情報から完全な情報の神経活動パターンを再現し、記憶を想起する働きはパターンコンプリション(Pattern completion)と呼ばれ,海馬CA3領域内のフィードバック機能をもつリカレント回路(反回性回路)にその機能があると想定されている[2]。

記憶想起を制御する脳領域

現在のところ、想起を直接調べる実験系が少ないため、記憶の他のプロセスに比べ研究が進んでいないのが現状ではあるものの、徐々に記憶想起のメカニズムが明らかになってきている。 記憶の固定化には海馬や扁桃体などが関与することが示されているが、これまでの研究により想起にも多くの脳領域が関与することが示唆されている。 2015年にKarim Naderらのグループは聴覚性恐怖条件づけ学習課題を用いて、恐怖記憶を憶えさせたラットの扁桃体にタンパク質合成阻害剤を注入した後に聴覚刺激を与えても、ラットは記憶を想起することが出来なかった。このことから、後に記す再固定化や消去のプロセスと同様に想起にはタンパク質合成が必要であることが示されている[3]。 また2002年、利根川らのグループは海馬のCA3領域がパターンコンプリションに極めて重要な役割を果たすと考えられえていることから、CA3特異的にNMDA受容体をノックアウトしたマウスを作製した。それらのマウスをモリス水迷路に供し、空間記憶を評価した。この実験において、初めマウスはプールに入れられるとそこから逃れるためにプール内を泳ぎ回り、偶然、水面下に設置されたプラットフォームに辿り着くが、この試行を繰り返すうちにマウスは周囲の目印からプラットフォームの空間的な位置を学習し、プラットフォームまで素早く辿り着くようになった。マウスがプラットフォームの位置を十分に認識した後、プラットフォームおよび周囲の目印をいくつか取り除き、再度試験を行った。正常なマウス、NMDA受容体をノックアウトしたマウス共に、周囲の目印が4つすべて揃っている場合では、プラットフォームが存在していた場所を泳ぐ割合に差はなかった。しかし、周囲の目印を1つだけに減らした場合では、NMDA受容体ノックアウトマウスは正常なマウスに比べ、プラットフォームが存在していた場所を泳ぐ割合が有意に少なく、NMDA受容体ノックアウトマウスは想起に異常を示した。このことから、CA3領域におけるNMDAR受容体は記憶の想起に重要であることが示唆された[4]。 また、大脳皮質と想起の関連性も研究されてきている。海馬依存的に形成された記憶は時間経過に伴って大脳皮質依存性に移行し保存される(遠隔記憶)と考えられている。このような移行メカニズムにより固定化された記憶は記憶形成後に長時間が経過しても想起することが可能となっている。しかし、想起を担う神経回路が時間とともにどう変化するかは、ほとんど分かっていなかった。2015年、Gregory Quirkらのグループは聴覚性恐怖条件づけ学習課題を用いて、恐怖記憶を形成させ、一定期間経過後にラットの背側視床正中核(Dorsal midline thalamus)にGABA-A受容体のアゴニストであるムシモールを注入することで背側視床正中核の活動を抑制し、想起と背側視床正中核の関連性を検討した。その結果、学習後短い時間(30分、6時間)ではラットは恐怖記憶を想起でき、背側視床正中核を必要としないが、学習から長い時間(24時間、7、28日)が経過した後ではラットは恐怖記憶を想起できず、長時間経過後の想起には、背側視床正中核が必要であることが明らかになった。同様に、背側視床正中核の一部である視床室傍核(Paraventricular nucleus of the thalamus)では、長時間経過後(24時間経過後)から想起時にc-Fosの発現が増加することや、視床室傍核ニューロンの聴覚性刺激(音)に対する条件反応が増大したことを発見し、記憶後の経過時間と共に視床室傍核が恐怖記憶の想起に関わっていくことを示した。視床室傍核には大脳皮質の一部である前辺縁皮質(Prelimbic cortex)から高密度にニューロンが投射しており、学習から長時間経過後に記憶を想起すると、視床室傍核に投射する前辺縁皮質ニューロンが活性化した。光遺伝学的手法を用いて、これらの投射ニューロンを抑制すると長時間経過後の記憶想起が阻害されるが、短時間経過後の想起は阻害されない。これとは対照的に、前辺縁皮質から扁桃体基底外側部への入力を光遺伝学的に抑制すると短時間経過後の記憶想起が阻害されるが、長時間経過後の想起は阻害されないことから、記憶想起を司る神経回路が時間に応じて変化することが明らかになった[5]。 大脳皮質は主に6層から構成されており、各層は等質な層構造ではなく、それぞれ異なる細胞種構成や層内・層間の異なるサブネットワークを形成している。各層へ連続的に情報が伝達されることで、より複雑な情報が処理されるというモデルが提唱されてきた。つまり各層ごとに役割が異なることが示唆されているが、手法的な限界により想起に対する役割は解析されていなかった。このような状況の中、2016年に宮下保司らのグループは微小電極記録法、核磁気共鳴画像法(MRI)と組織切片法を組み合わせた手法を開発し、手がかりとなる図形からペアを組む図形を記憶から想起して選択するように訓練されたマカクザルを用いて大脳皮質の各層から神経細胞の活動を記録し、想起に対する各層構造の関連を解析した。その結果、側頭葉の36野と呼ばれる領域内の、第2層~4層の神経細胞は手がかりとなる図形の情報を保持しており、一方、第5層・6層の神経細胞は想起させる図形の情報を処理していた。このことから、記憶の想起は第5・6層において主に行われていることが明らかとなり、記憶を想起する際に、側頭葉における各層が異なる情報処理機能を担っていることが明らかとなった[6]。