受容野
田中 宏喜
京都産業大学 コンピュータ理工学部 インテリジェントシステム学科
DOI:10.14931/bsd.1032 原稿受付日:2012年4月27日 原稿完成日:2012年8月13日
担当編集委員:藤田 一郎(大阪大学 大学院生命機能研究科)
英:receptive field 独:Rezeptives feld 仏:champ récepteur
受容野 (receptive field)とは、感覚処理系の個々の細胞が、外界あるいは体内に生じた刺激に対し、感覚受容器を通じて、反応することのできる末梢器官上での空間範囲あるいはそれに対応する外界空間での範囲をいう。受容野の位置、大きさ、形および内部構造は細胞により異なるため、個々の細胞はそれぞれ特定の刺激に感受性を示すようになる。感覚処理経路の初期段階の細胞ほど、小さく単純な構造の受容野をもち、後の段階の細胞ほど、広く複雑な構造の受容野を持つ。このため、感覚処理系では、その処理経路に沿って、逐次、複雑な情報伝達が行われるようになっている。
概念と概要
受容野とは
個体は、周囲の環境あるいは体内の変化を刺激としてとらえ知覚することができる。これは、外界刺激の物理エネルギーが感覚受容器における電気信号へと変換された刺激情報が大脳皮質感覚野を含む感覚処理経路に沿って伝達されることによる。このとき経路の個々の細胞は自身の電気活動を変化させることで刺激情報の処理伝達を行うが、末梢の特定の部位に生じた刺激にしか反応できない。この限られた末梢部位の範囲を細胞の受容野とよぶ。受容野の位置は細胞により異なる。視覚の場合は、細胞が光刺激に反応しうる網膜の範囲(あるいはその部位に対応する視野範囲)を意味し、体性感覚では、細胞が触圧などの刺激に反応しうる体部位の範囲を指す。聴覚においては感覚受容細胞である有毛細胞は、音の空間位置に対応した反応を示さないが、ある種の動物(例:メンフクロウ)の聴覚中枢には音源の方向に感受性を持つ細胞が存在する。
受容野の最初の明確な定義はH. K. Hartline (1940) による[1]。彼は、スポット光にたいするカエル網膜神経節細胞の活動を調べたところ、網膜のある範囲に光を照射したとき、あるいは光を取り除いたときにのみ細胞が反応することを見いだし、この範囲を受容野と定義した。
感覚経路と受容野構造の階層性
受容野内部に呈示された刺激は、細胞を興奮させることも抑制することもある。後述するように、ネコの網膜神経節細胞は、受容野の中心部分に光を照射する場合と周辺部分に照射する場合とで反応が異なり、一方では興奮応答がみられ、他方では抑制応答がみられる[2]。このように、細胞が刺激に応答する様式は受容野内部で一様でなく、その内部的な構造は受容野構造(receptive field structure)とよばれている。
同じ感覚系でも受容野構造はその処理段階で大きく異なる。これは、感覚処理経路において前段階の出力が収斂と分散を繰り返しながら次段階へと送られていくためである。一般に初期段階では狭く単純な構造の受容野がみられるのにたいし、高次の段階になると広く複雑な構造の受容野がみられる。とくに、初期段階の細胞の受容野では、その内部に複数の刺激が呈示されても、入力信号は単純に線形加算(linear summation)されるだけの場合が多い。このような受容野は線形受容野(linear receptive field)とよばれ、その構造は単純な空間フィルターとして表される。一方、高次の段階では、受容野内部での信号の加算の仕方は非線形(nonlinear)なものとなり、その受容野構造は、複数の空間フィルターや整流機構(rectification)などを縦列、並列に組み合わせた複雑な回路様の機構として記述される。
視覚系
古典的受容野と非古典的受容野
単独で呈示された刺激が細胞応答を変化させる空間範囲を古典的受容野(classical receptive field, CRF)と呼ぶ。視覚系で受容野とは古典的受容野を指す場合が多い。古典的受容野の周囲には非古典的受容野(non classical receptive field, nCRF)と呼ばれる領域がある(後述)。 以下に、主要な視覚処理経路である、網膜、視床外側膝状体(lateral geniculate nucleus, LGN)、大脳皮質第一次視覚野(primary visual cortex, V1野)を経て高次視覚野へと至る経路の各段階の古典的受容野をみていく[3]。
網膜、視床中継核
視細胞
外界の光を電気信号に変換する視細胞には杆体(rod)、錐体(cone)の2種類があり、前者は暗所視に、後者は明所視、色覚に関与している。いずれの受容野も概ね円状で、受容野サイズは非常に小さく、霊長類網膜の中心窩(fovea)では視野角にして0.5分程度(1/120度)である。
中心周辺拮抗型受容野
視細胞からの入力を受け取る双極細胞(bipolar cell)、次の段階に位置する網膜神経節細胞(retinal ganglion cell)、さらに次の段階の視床外側膝状体の細胞には、明るい光を受容野の中心部(center)に照射したときに興奮応答するON中心型(ON-center type)と、暗い光を照射したときに興奮応答するOFF中心型(OFF-center type)の2種類が存在する[2][4]。いずれも、中心部の周辺に照射された光には逆の応答をする。すなわち、ON中心型細胞は周辺部に明るい光を受けたときに、OFF中心型細胞は周辺部に暗い光を受けたときに、抑制応答を示す。中心部と周辺部は同心円状に配置し、逆の反応がみられることから、この受容野を中心周辺拮抗型(antagonistic center-surround)とよぶ。神経節細胞ではさらに、中心部、周辺部のそれぞれの内部でも刺激の明暗の違いで反応が逆になり、明るい光で抑制反応がみられる場所では暗い光で興奮反応がみられ、暗い光で抑制反応がみられる場所では明るい光で興奮反応がみられる。このためON中心型の受容野をON中心OFF周辺型(ON-center OFF-surround)と呼び(図1A)、OFF中心型の受容野をOFF中心ON周辺型(OFF-center ON-surround)とも呼んでいる(図1B)。このような受容野構造を持つ細胞は、2次元のサイン波縞刺激にたいして、明るい光あるいは暗い光が中心部にマッチするときには(図1C上)興奮応答するが、光が一様に入るときには(図1C下)ほとんど反応しないことから、明暗コントラストのエッジの幅や位置の情報を伝達していると捉えることができる。
中心周辺拮抗型の受容野構造は2つのガウス関数の差分であるDOG(difference-of-Gaussians)関数で表すことができる(図1A, Bの下段)[5]。またこのような受容野をもつ細胞の応答は入力刺激と受容野構造の内積で表しうる。ただし、網膜神経節細胞の受容野構造が最も古くから調べられてきたネコでは、このような線形近似が十分に成り立つ細胞とそうでない細胞が存在しており、前者をX細胞、後者をY細胞という[6]。
色対立型受容野と広帯域型受容野
霊長類網膜神経節細胞は、形態的特徴からミジェット細胞とパラソル細胞に区分される。ミジェット細胞は光波長(色)感受性を持ち、しかも受容野中心部と周辺部で異なる光波長に感受性があるものが多い。たとえばある細胞は、受容野中心部では緑色に興奮応答を示し、周辺部では赤色に抑制応答を示す。このようなタイプの受容野は色対立型(color opponent type)と呼ばれる。パラソル細胞の中心部、周辺部では、いずれも広い範囲の光波長に感受性がみられる。このような受容野タイプは広帯域型(broad-band type)と呼ばれる [7]。
第一次視覚野単純型細胞
受容野構造
網膜神経節細胞あるいは外側膝状体細胞は、細長いスリット光が動物に呈示されたとき、その向き(方位)を変えても反応はあまり変化しない。このことは、これらの細胞の受容野構造がほぼ同心円状であることから予想できる。これにたいし、 一次視覚野(V1野)の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この方位選択性(orientation selectivity)をもつ細胞の古典的受容野には以下の2つのタイプがある[8] [9]。第一のタイプでは、明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並ぶ(図2)。ON、OFF領域の伸びる向き、大きさ、位置関係は細胞により様々である。このような受容野構造を持つ細胞を単純型細胞(simple cell)とよぶ。単純型細胞の受容野は、同じ空間軸上に受容野の中心をもつ複数のLGN細胞からの入力が収斂することで、形成されると考えられる[9][10][11]。第2のタイプでは、ON領域とOFF領域が重なり合う。この構造をもつ細胞を複雑型細胞(complex cell)と呼ぶ(図3)。
ガボールフィルターによる近似
単純型細胞の古典的受容野はガボールフィルーターでよく近似できる(図2B)[12] 。ガボールフィルターはガウス関数とサイン波の積で定義される。ガボールフィルターのパラメーターを変えることで、図2Bに示す様々なサイズ、方位、スケール、そして位相の空間構造を表すことができ、実際にみられる様々な単純型細胞の受容野構造を系統的に表すことができる。
線形性と刺激選択性
単純型細胞の受容野には、強い線形性がみられ、任意の刺激にたいする細胞の応答は、受容野構造と刺激の内積値を半波整流(half rectification)することで近似できる。[13] [14]。したがって、単純型細胞は、その受容野構造と形がマッチした刺激ほど強く反応する。たとえば2次元サイン波を刺激とする場合、その明暗がON領域、OFF領域とマッチするような方位、空間周波数(spatial frequency)(=サイン波の周期の逆数)、位相(phase)を持つものが適刺激となる(図2C参照)。
時空間受容野と運動方向選択性
細胞は、刺激入力を受けるとそれに対する信号を瞬時に出力するわけでなく、過去一定時間内の入力を加算して出力する。細胞の現在の出力が、過去の入力にどのように依存するのかを表した時間特性を時間受容野 (temporal receptive field)と呼ぶ。これに対し、空間範囲という通常の意味での受容野のことを空間受容野(spatial receptive field)という。空間受容野と時間受容野を合わせて時空間受容野(spatiotemporal receptive field)と呼ぶ。
単純型細胞の大半は、物体がある向きに向かって動くときに強く反応し、それと反対方向に動くときには反応しない運動方向選択性を示す[8]。このような細胞の時空間受容野では、時間軸に沿ってON領域およびOFF領域の位置がある方向にずれていく[15]。この方向が細胞の好みの運動方向を表す。
受容野の両眼性
網膜に始まる視覚処理経路において左右両眼からの入力が細胞レベルで初めて収斂するV1野では、多くの細胞が両眼に受容野をもつ[8][9] 。単純型細胞では、ON領域やOFF領域の伸びる向きや幅は、左右の受容野で同じであるが、これらの領域の位置関係が、左右で異なる場合が多い。この位置ずれは、奥行き知覚の手がかりとなる網膜上の両眼視差(binocular disparity)に対する感受性を単純型細胞にもたらす。ずれの大きさは細胞により異なり、このため単純型細胞は、全体として様々な両眼視差を適刺激とする[16] [17]。
複雑型細胞
複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答がサイン波の位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相に関係なく強い反応がみられる。この特性は、最適な方位や空間周波数が同じで、最適な位相が異なる単純型細胞群の出力が複雑型細胞で収斂することで作ることができる[9]。これを示すモデルのうち最も単純なものが図3に示すエネルギーモデル(energy model)である。このモデルでは、単純型細胞を模した4つのサブユニット(S1, S2, S3, S4) からの出力が収斂することで、複雑型細胞を模したエネルギーユニット(Cで表す)の応答が形成される。各サブユニットは、共通の方位、空間周波数および90度ずつ位相のずれたガボールフィルターをもち、フィルターを通した入力信号を半波整流して出力する。さらに、各サブユニットが同じ時間受容野をもつようにモデルを拡張することで、エネルギーユニットが運動方向選択性を示すようにできる。この拡張したエネルギーモデルは運動エネルギーモデル(motion energy model)と呼ばれる[18]。複雑型細胞の大半は運動方向選択性を示すが[8]、その特性は運動エネルギーモデルでうまく説明できる[19]。
複雑型細胞の多くはまた、受容野内部であれば刺激の位置や明暗コントラスに関係なく両眼視差を検出できる。この性質は両眼視差エネルギーモデル(disparity energy model)でうまく説明される[20]。
非古典的受容野
古典的受容野の周辺には、刺激が単独で呈示されるときには細胞活動に影響しないが、古典的受容野内部の刺激と同時に呈示されると、細胞に影響を及ぼす空間範囲があり、これを非古典的受容野とよんでいる。
非古典的受容野は網膜の段階ですでに存在しており、視覚経路のほとんど全ての段階でみられるが、ここでは最も多くの研究がなされたV1野の非古典的受容野について述べる。 V1野ではこの構造は周辺領域とよばれることも多いが、これは網膜でみられる古典的受容野の周辺部とは全く異なるので注意が必要である。この領域は古典的受容野の周囲に一様に広がるのではなく、ある程度の局在がみられ、古典的受容野の最適方位軸の延長上に広がるもの、最適方位と直交する軸方向に広がるもののほか、斜め方向に広がるものもある[21] [22]。多くは抑制性の影響を及ばすが興奮性の影響も報告されている[23] 。非古典的受容野でみられる抑制には特徴選択性があり、古典的受容野内での最適な刺激方位、空間周波数が、非古典的受容野で最も強い抑制を引き起こす[24][25] 。これらの特性は、ポップアップや図地分化と呼ばれる知覚現象の基盤として[26] 、あるいは線の長さや曲率[27]、主観的輪郭[28] 、テクスチャー境界[22]などさまざまな特徴を検出するための初期機構として注目されている。
高次視覚野
サイズの変化
V1野以外にも霊長類には30以上もの視覚関連領野があり、これらはV1野、V2野を経て側頭葉(temporal lobe)へと至る腹側経路(ventral pathway)と頭頂葉(parietal lobe)へと至る背側経路(dorsal pathway)の2つの経路として構成されている。腹側経路は主に物体形状の分析に、背側経路は運動や空間位置情報の伝達に関与していると考えられている [29] 。
細胞の受容野サイズは高次の領野ほど大きくなる。霊長類のV1野では、中心視野でみられる受容野サイズは0.1~1度程度であるが、腹側経路の最終段階に位置するTE野では、10度以上にもなる。ただし受容野サイズは偏心度にも依存し、中心視野では小さく、周辺視野ほど大きくなる。例えば V1野の周辺視野の受容野サイズは5度から10度程度である。また V1野細胞の受容野位置は対側視野(細胞が存在する大脳半球の反対側の視野部位。右半球の場合は左視野)に限られるものが大部分であるが、視覚経路後半になって受容野サイズが大きくなるにつれて、同側視野も含むものが増してくる。TE野では多くの細胞が同側視野を受容野に含む[30]。
背側経路
空間視に関連の深い背側経路では、受容野の位置が、網膜座標以外の空間座標系に依存するような細胞が多くみられる。たとえば、V3A野やその上位にある7a野には、受容野の位置は網膜座標系で固定されているものの、頭部を基準とした座標系にも依存し、眼球が特定の方向に向くときに強く活動するような細胞が存在する[31]。PO野には、もはや網膜座標には依存せず、頭や体との位置関係で固定された受容野をもつ細胞が現れる[32]。同様の細胞は、視覚入力と体性感覚入力の両方を受けるVIP野や7b野などにもみられる。これらは、身体の一部に受容野をもち、そこへの皮膚刺激とその場所へ向かってくる視覚刺激の両方に応答する[33]。
背側経路の多くの細胞は両眼に受容野をもち、両眼視差に感受性をもつ。これらは物体の奥行き位置や3次元形状の表現に関与していると考えられている[34]。
腹側経路
腹側経路では、高次の段階に向かうにつれて、複雑な物体特徴を適刺激とするような受容野が増してくる。V2野に折れ線に反応する細胞[35] 、V4野にテクスチャー、パターン、曲率や凹凸の情報を伝える細胞[36]、TEO野には物体の部分的特徴、TE野に至っては顔などの極めて複雑な特徴の情報を伝える細胞が存在する[37][38]。これらの細胞の多くは、受容野内部で刺激の位置、向き、あるいは形を定義する手がかり(明るさの違いや色の違いなど)を変えても特徴選択性を維持する。 腹側経路でも、大部分の細胞は両眼に受容野をもち、両眼視差に感受性を持つことから、この経路も奥行き知覚に関与していると考えられている[39]。
体性感覚系
一次求心性神経線維
触圧感覚をもたらす機械受容器には皮膚表面近くに位置するマイスナー小体、メルケル終末と深部にあるパチニ小体、ルフィニ終末の4種類が知られている。マイスナー小体、メルケル終末から出る1次求心性線維の受容野はスポット状で比較的小さい。例えば、手の場合、これらの線維の受容野サイズは直径数ミリ程度である。パチニ小体、ルフィニ終末から出る線維の受容野はそれよりも大きく、境界が不明瞭である場合が多い[40]。自由神経終末である温冷覚受容野からの1次線維の受容野サイズは、四肢末端では直径数ミリ程度である。痛覚受容器からの線維には、同程度の比較的狭い受容野をもつ特定的侵害受容ニューロンと、より大きい受容野をもつ広作動閾ニューロンとがある。ただし、いずれの受容器に由来する場合も、体幹に近いところでは一時線維の受容野サイズは数十平方センチメートルと非常に大きくなる。
体性感覚野
1次体性感覚野は、視床からの入力が入る3a野、3b野と、そこから入力を受ける2野、1野に区分される。皮膚からの入力は3b野から主に1野へ、筋や腱からの入力は3a野から主に2野へと運ばれる。ただし1野、2野ともに3aおよび3bの両方から入力を受け取り、これらの入力は多くの細胞で収斂している。
各領野の細胞の受容野位置は、その細胞が存在する大脳半球の反対側の体部位に限られる。これらの細胞の受容野サイズは1次線維と比べるとはるかに大きく、手でも直径数センチメートルある。さらに3a野、3b野より1野や2野のほうが大きい。たとえば3b野の指に受容野をもつ細胞は指一本程度のものが多くあるが、1野や2野には数本の指に受容野が広がるものが数多くみられる [41]。
1野や2野の細胞は、3a野や3b野よりも複雑な受容野特性を示すことが知られており、たとえば表皮をこする物体の動きや、物体が伸びる向きや物体表面のテクスチャーなどに選択性を示す細胞が報告されている[42]。
頭頂葉の体性感覚皮質(5野、7野)は1次体性感覚野から入力を受け取る。この領野の細胞は1次体性感覚野よりも広い受容野をもち、また体の両側の対称な場所に受容野をもつものが多い。たとえばある細胞は両手の5本指全体に受容野をもつ[43]。さらに、これらの細胞は、皮膚だけでなく、いくつかの筋、腱からの入力が収斂しており、手全体や腕全体といった体の各パーツの姿勢の情報を伝達し、運動の体性感覚ガイダンスに関与していると考えられている。
聴覚系
聴覚空間受容野の生成
音信号は、末梢受容器官である内耳蝸牛の有毛細胞により電気信号に変換されたのち、蝸牛神経により延髄の蝸牛神経核へと送られる。有毛細胞は特定の音周波数に選択的に応答するが、外界のいずれの方向からやってくる音に対しても応答する。蝸牛神経繊維や蝸牛神経核の細胞も、有毛細胞と同様、周波数に鋭い選択性を示すが、音の空間位置に選択性は示さない。すなわち、視覚や体性感覚の場合と異なり、聴覚系の初期段階の細胞は、定まった空間受容野を持たない。
蝸牛神経核で処理された音信号は、哺乳類では脳幹の上オリーブ複合体、外側毛帯核を経て中脳の下丘へと伝達され、その後、視床内側膝状体、大脳皮質一次聴覚野へと伝達される。この経路に沿って、音源位置と密接な対応関係のある両耳間時間差(音が左右の耳に届くタイミングのずれ)や両耳間強度差などが検出され、一部の細胞はある空間範囲から来る音だけに応答するようになる。このような空間受容野を持つ細胞は、後述するメンフクロウの下丘以外に、ネコ、サルの一次聴覚野などで発見されており、動物が音の位置を特定する能力、すなわち音源定位の神経基盤をなしていると考えられている[44][45]。
メンフクロウの聴覚受容野
優れた音源定位能力をもつメンフクロウの聴覚中枢には、はっきりと限局した空間受容野をもつ細胞が存在する。両耳間強度差および両耳間時間差(メンフクロウではそれぞれ音源の垂直位置および水平位置の手がかりとなる)が収斂する下丘の亜核、下丘外側核では、多くの細胞が垂直水平のいずれの方向にも明瞭な境界のある受容野をもつ。この受容野は、網膜神経節細胞の中心周辺拮抗型受容野のように、細胞に興奮を引き起こす領域とそれを取り囲む抑制性の周辺領域からなっている[46]。さらに、このような受容野をもつ細胞は、受容野の位置にしたがって2次元的に秩序正しく配置しており、外界の空間を再現した聴覚地図を構成している[47]。
関連項目
参考文献
- ↑ H. K. Hartline
The receptive fields of optic nerve fibers.
Am. J. Physiol.: 1940, 130; 690-699. - ↑ 2.0 2.1
KUFFLER, S.W. (1953).
Discharge patterns and functional organization of mammalian retina. Journal of neurophysiology, 16(1), 37-68. [PubMed:13035466] [WorldCat] [DOI] - ↑ 福田淳 佐藤宏道
脳と視覚 -何をどうみるか
ブレインサイエンスシリーズ14 "共立出版" 2002 - ↑
Kaneko, A. (1973).
Receptive field organization of bipolar and amacrine cells in the goldfish retina. The Journal of physiology, 235(1), 133-53. [PubMed:4778132] [PMC] [WorldCat] [DOI] - ↑
Rodieck, R.W. (1965).
Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision research, 5(11), 583-601. [PubMed:5862581] [WorldCat] [DOI] - ↑
Enroth-Cugell, C., & Robson, J.G. (1966).
The contrast sensitivity of retinal ganglion cells of the cat. The Journal of physiology, 187(3), 517-52. [PubMed:16783910] [PMC] [WorldCat] [DOI] - ↑
Dacey, D.M. (1999).
Primate retina: cell types, circuits and color opponency. Progress in retinal and eye research, 18(6), 737-63. [PubMed:10530750] [WorldCat] - ↑ 8.0 8.1 8.2 8.3
HUBEL, D.H., & WIESEL, T.N. (1959).
Receptive fields of single neurones in the cat's striate cortex. The Journal of physiology, 148, 574-91. [PubMed:14403679] [PMC] [WorldCat] [DOI] - ↑ 9.0 9.1 9.2 9.3
Hubel, D.H., & Wiesel, T.N. (1968).
Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215-43. [PubMed:4966457] [PMC] [WorldCat] [DOI] - ↑
Tanaka, K. (1983).
Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of neurophysiology, 49(6), 1303-18. [PubMed:6875624] [WorldCat] [DOI] - ↑
Chapman, B., Zahs, K.R., & Stryker, M.P. (1991).
Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 11(5), 1347-58. [PubMed:2027051] [WorldCat] - ↑
Jones, J.P., & Palmer, L.A. (1987).
The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of neurophysiology, 58(6), 1187-211. [PubMed:3437330] [WorldCat] [DOI] - ↑
Movshon, J.A., Thompson, I.D., & Tolhurst, D.J. (1978).
Spatial summation in the receptive fields of simple cells in the cat's striate cortex. The Journal of physiology, 283, 53-77. [PubMed:722589] [PMC] [WorldCat] [DOI] - ↑
Heeger, D.J. (1992).
Half-squaring in responses of cat striate cells. Visual neuroscience, 9(5), 427-43. [PubMed:1450099] [WorldCat] [DOI] - ↑
DeAngelis, G.C., Ohzawa, I., & Freeman, R.D. (1993).
Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. Journal of neurophysiology, 69(4), 1118-35. [PubMed:8492152] [WorldCat] [DOI] - ↑
DeAngelis, G.C., Ohzawa, I., & Freeman, R.D. (1991).
Depth is encoded in the visual cortex by a specialized receptive field structure. Nature, 352(6331), 156-9. [PubMed:2067576] [WorldCat] [DOI] - ↑
Ferster, D. (1981).
A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. The Journal of physiology, 311, 623-55. [PubMed:7264985] [PMC] [WorldCat] [DOI] - ↑
Adelson, E.H., & Bergen, J.R. (1985).
Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America. A, Optics and image science, 2(2), 284-99. [PubMed:3973762] [WorldCat] - ↑
Emerson, R.C., Bergen, J.R., & Adelson, E.H. (1992).
Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision research, 32(2), 203-18. [PubMed:1574836] [WorldCat] [DOI] - ↑
Ohzawa, I., DeAngelis, G.C., & Freeman, R.D. (1990).
Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science (New York, N.Y.), 249(4972), 1037-41. [PubMed:2396096] [WorldCat] [DOI] - ↑
Walker, G.A., Ohzawa, I., & Freeman, R.D. (1999).
Asymmetric suppression outside the classical receptive field of the visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(23), 10536-53. [PubMed:10575050] [PMC] [WorldCat] - ↑ 22.0 22.1
Tanaka, H., & Ohzawa, I. (2009).
Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features. Journal of neurophysiology, 101(3), 1444-62. [PubMed:19109456] [WorldCat] [DOI] - ↑
Kapadia, M.K., Westheimer, G., & Gilbert, C.D. (2000).
Spatial distribution of contextual interactions in primary visual cortex and in visual perception. Journal of neurophysiology, 84(4), 2048-62. [PubMed:11024097] [WorldCat] [DOI] - ↑
DeAngelis, G.C., Freeman, R.D., & Ohzawa, I. (1994).
Length and width tuning of neurons in the cat's primary visual cortex. Journal of neurophysiology, 71(1), 347-74. [PubMed:8158236] [WorldCat] [DOI] - ↑
Akasaki, T., Sato, H., Yoshimura, Y., Ozeki, H., & Shimegi, S. (2002).
Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neuroscience research, 43(3), 207-20. [PubMed:12103439] [WorldCat] [DOI] - ↑
Knierim, J.J., & van Essen, D.C. (1992).
Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of neurophysiology, 67(4), 961-80. [PubMed:1588394] [WorldCat] [DOI] - ↑
Dobbins, A., Zucker, S.W., & Cynader, M.S. (1987).
Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature, 329(6138), 438-41. [PubMed:3657960] [WorldCat] [DOI] - ↑
von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984).
Illusory contours and cortical neuron responses. Science (New York, N.Y.), 224(4654), 1260-2. [PubMed:6539501] [WorldCat] [DOI] - ↑
Felleman, D.J., & Van Essen, D.C. (1991).
Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex (New York, N.Y. : 1991), 1(1), 1-47. [PubMed:1822724] [WorldCat] [DOI] - ↑
Desimone, R., Albright, T.D., Gross, C.G., & Bruce, C. (1984).
Stimulus-selective properties of inferior temporal neurons in the macaque. The Journal of neuroscience : the official journal of the Society for Neuroscience, 4(8), 2051-62. [PubMed:6470767] [WorldCat] - ↑
Colby, C.L., Duhamel, J.R., & Goldberg, M.E. (1993).
Ventral intraparietal area of the macaque: anatomic location and visual response properties. Journal of neurophysiology, 69(3), 902-14. [PubMed:8385201] [WorldCat] [DOI] - ↑
Galletti, C., Battaglini, P.P., & Fattori, P. (1993).
Parietal neurons encoding spatial locations in craniotopic coordinates. Experimental brain research, 96(2), 221-9. [PubMed:8270019] [WorldCat] [DOI] - ↑
Colby, C.L., Duhamel, J.R., & Goldberg, M.E. (1993).
Ventral intraparietal area of the macaque: anatomic location and visual response properties. Journal of neurophysiology, 69(3), 902-14. [PubMed:8385201] [WorldCat] [DOI] - ↑
Taira, M., Tsutsui, K.I., Jiang, M., Yara, K., & Sakata, H. (2000).
Parietal neurons represent surface orientation from the gradient of binocular disparity. Journal of neurophysiology, 83(5), 3140-6. [PubMed:10805708] [WorldCat] [DOI] - ↑
Ito, M., & Komatsu, H. (2004).
Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(13), 3313-24. [PubMed:15056711] [PMC] [WorldCat] [DOI] - ↑
Gallant, J.L., Braun, J., & Van Essen, D.C. (1993).
Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science (New York, N.Y.), 259(5091), 100-3. [PubMed:8418487] [WorldCat] [DOI] - ↑
Desimone, R., Albright, T.D., Gross, C.G., & Bruce, C. (1984).
Stimulus-selective properties of inferior temporal neurons in the macaque. The Journal of neuroscience : the official journal of the Society for Neuroscience, 4(8), 2051-62. [PubMed:6470767] [WorldCat] - ↑
Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992).
Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360(6402), 343-6. [PubMed:1448150] [WorldCat] [DOI] - ↑
Uka, T., Tanaka, H., Yoshiyama, K., Kato, M., & Fujita, I. (2000).
Disparity selectivity of neurons in monkey inferior temporal cortex. Journal of neurophysiology, 84(1), 120-32. [PubMed:10899190] [WorldCat] [DOI] - ↑ R. S. Johansson and A. B. Vallbo
Tactile sensory coding in the glabrous skin of the human hand.
Trends Neurosci.: 1983, 6; 27-32. - ↑
Mountcastle, V.B. (1997).
The columnar organization of the neocortex. Brain : a journal of neurology, 120 ( Pt 4), 701-22. [PubMed:9153131] [WorldCat] [DOI] - ↑
Hyvärinen, J., & Poranen, A. (1978).
Movement-sensitive and direction and orientation-selective cutaneous receptive fields in the hand area of the post-central gyrus in monkeys. The Journal of physiology, 283, 523-37. [PubMed:102767] [PMC] [WorldCat] [DOI] - ↑
Iwamura, Y., Iriki, A., & Tanaka, M. (1994).
Bilateral hand representation in the postcentral somatosensory cortex. Nature, 369(6481), 554-6. [PubMed:8202155] [WorldCat] [DOI] - ↑
Konishi, M. (2003).
Coding of auditory space. Annual review of neuroscience, 26, 31-55. [PubMed:14527266] [WorldCat] [DOI] - ↑
Recanzone, G.H., Guard, D.C., Phan, M.L., & Su, T.K. (2000).
Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of neurophysiology, 83(5), 2723-39. [PubMed:10805672] [WorldCat] [DOI] - ↑
Knudsen, E.I., & Konishi, M. (1978).
Center-surround organization of auditory receptive fields in the owl. Science (New York, N.Y.), 202(4369), 778-80. [PubMed:715444] [WorldCat] [DOI] - ↑
Knudsen, E.I., & Konishi, M. (1978).
A neural map of auditory space in the owl. Science (New York, N.Y.), 200(4343), 795-7. [PubMed:644324] [WorldCat] [DOI]