中心体

2012年6月4日 (月) 23:43時点におけるHirokiumeshima (トーク | 投稿記録)による版

英:centrosome

重要な関連語:中心小体、中心子、微小管形成中心、一次繊毛、基底小体

動物細胞に存在する細胞内小器官の1つであり、主要な微小管形成中心(microtubule organizing center: MTOC)として機能する。細胞分裂の際に紡錘体極に存在し紡錘体の形成に関与する他、神経細胞を含む多くの細胞において細胞極性の形成・維持に関与すると考えられている。また、ある種の細胞においては基底小体(basal body)として一次繊毛(primary cilia)の基部に存在しその形成に重要な役割を担う。

構造

 
図1 中心体の構造
母中心小体はdistal appendageおよびsubdistal appendageと呼ばれる特徴的な構造を持つ。また、母中心小体と娘中心小体はC-Nap1、rootletinなどのリンカー蛋白質によって連結されている。
mother centriole:母中心小体、daugher centriole:娘中心小体、pericentriolar material:中心小体周辺物質、γ-TuRC: γ-tubulin ring complex、microtubule:微小管
 
図2 中心小体の構造
中心小体の長軸に対して水平方向(左)および垂直方向(右)の断面を示した模式図。中心小体は3本の連結した微小管が9つ円周上に並びシリンダー構造を形成している。シリンダー内腔(lumen)にはCentrinなど多数の蛋白質が局在している。

中心体は、一対の中心小体(または中心子;centriole)中心小体周辺物質(pericentriolar material: PCM)によって構成される。中心小体は9つの三連微小管が円周上に並んだ直径0.2μm、長さ0.5μm程度のシリンダー構造を有しており、その周囲を多数の蛋白質が集まった不定形のPCMが覆っている。PCMに局在するγ-tubulin ring complex (γ-TuRC)は微小管の重合核として機能しそこから微小管が伸長する。

中心体は染色体と同様に細胞周期の制御下で複製され娘細胞に分配されることが知られている。まず、G1期からS期にかけて各々の中心小体の側部にSas6など新たな中心小体の鋳型となる分子が集積する。S期からG2期には鋳型を基に中心小体を構成する微小管が伸長し二対の中心小体が形成される。M期に入ると元の中心小体を連結していたリンカーが解離し、新たに形成された2つの中心体は分離して紡錘体の両端にそれぞれ局在する。それらの中心体は細胞分裂によって娘細胞に一つずつ分配される。分配された一対の中心小体は次のG1期においてリンカー蛋白質によって再び連結される[1]

中心体内に存在する2つの中心小体は同質ではなく、”より古い”方の中心小体(母中心小体: mother centriole)はdistal appendagesubdistal appendageと呼ばれる構造を持つ。distal appendageは一次繊毛形成時に中心体を形質膜へと移動させるのに必要であると考えられている。subdistal appendageにはNineinなどの蛋白質が局在しており微小管を中心小体に繋ぎ留める機能を持つ。このような中心小体の非対称性は神経幹細胞の非対称分裂機構に寄与している可能性が示唆されている(下記参照)。

神経発生における役割

 
図3 移動中の小脳顆粒細胞の免疫染色像
核周辺の微小管は必ずしも中心体に収束していない。
青:DAPI(細胞核)、黄色:γ-tubulin(中心体)、マゼンダ:アセチル化チューブリン(安定な微小管)、緑:チロシン化チューブリン(動的な微小管)

神経幹細胞の非対称分裂

大脳皮質の神経幹細胞は発生初期においては対称分裂により自らと同じ性質をもつ娘細胞を2つ産生し神経幹細胞の数を増大させる。その後、神経幹細胞は非対称分裂により1つの神経幹細胞と1つの神経細胞を産生し、神経幹細胞の数を維持しながら神経細胞の数を増大させる。中心体は細胞分裂に関与するのに加えて非対称分裂の制御にも重要であると考えられている。Cdk5rap2などの中心体関連蛋白質を欠失させると神経幹細胞が維持できなくなり、大脳皮質の神経細胞数が著しく減少する(小頭症[2]。また、非対称分裂の際には”より古い”中心小体を含む中心体が神経幹細胞側の娘細胞に継承されること、subdistal appendageに局在するNineinが神経幹細胞の維持に必要であることが報告されている[3]

軸索形成

海馬大脳皮質の錐体ニューロンはまず複数の未分化な神経突起を形成した後、そのうちの1本を急速に伸長させ軸索へと分化させる。その際、中心体は軸索へと分化する神経突起の根元に局在することが報告されており、中心体が神経細胞における軸索決定を担う因子であることが示唆されている。中心体が主要な微小管重合開始点であるのに加えてゴルジ体が中心体近傍に局在することから、中心体の局在により特定の神経突起に対して選択的に微小管や膜成分を供給している可能性が考えられる。しかし、他のニューロンにおいては軸索決定と中心体の位置に相関は見られないという報告もあり、軸索決定における中心体の局在は特定の神経細胞において必要なのか、神経細胞の極性化に付随して起こる現象にすぎないのかはいまだ明らかではない。また、レーザー照射による中心体破壊実験の結果から、決定した後の軸索の伸長には中心体が必要ないことも報告されている。分化した神経細胞では中心体の微小管重合能は低下しており、主な微小管重合は軸索および樹状突起内に広く分布した非中心体性のγ-tubulinによって担われると考えられている[4]

神経細胞移動

移動中の神経細胞において中心体は細胞核の前方に局在し極性移動に関与すると考えられている。移動時において神経細胞はまず進行方向へと先導突起と呼ばれる神経突起を伸ばした後、細胞核およびその他の細胞内小器官を先導突起内へと移入させる。中心体は自身から伸長する微小管によって先導突起と細胞核を連結し細胞核を先導突起内へ牽引するというモデルが提唱されている[5]。しかし、移動中の神経細胞内では細胞核周辺の微小管が必ずしも中心体に収束しておらず、細胞核と中心体は独立に移動するという報告もあり[6]、神経細胞移動における中心体の正確な役割についてはいまだ結論が出ていない。また中心体自身の移動についても微小管モータータンパク質ダイニン[7]とアクチンモーターであるミオシン[8]の制御を受けるとされているが、その詳細はいまだ不明である。

一次繊毛の形成

神経幹細胞を含む多くの細胞は一次繊毛と呼ばれる微小管束によって膜が突出したアンテナ状構造を持つ。一次繊毛はhedgehogシグナルWntシグナルなどの細胞外シグナル分子に対するセンサーとして働く。間期の細胞において中心体は基底小体として一次繊毛の基部に存在しその形成に関与する。一次繊毛の欠失は脳の発生過程においてhedgehogシグナル依存的な細胞増殖の不全を始めとして様々な障害を引き起こすと考えられている[9]

中心体関連遺伝子と神経疾患

これまで脳の形成不全を伴う神経疾患の原因遺伝子として多くの中心体関連分子が同定されている。小頭症に関してはその原因遺伝子として7つの中心体関連遺伝子(MCPH1~7)が同定されている。小頭症では大脳皮質の神経細胞数が著しく減少していることから、細胞分裂または対称・非対称分裂の制御に異常があることが示唆される。ただし、中心体関連遺伝子の多くはDNA損傷応答にも関与しており、DNA損傷に伴う細胞死が関与している可能性もある。小頭症では皮質の層構造には異常が見られないことから神経細胞移動の関与は少ないと考えられる。一方、Ⅰ型滑脳症においては神経細胞移動の障害に起因する皮質の層構造異常が見られる。Ⅰ型滑脳症の原因遺伝子としてLis1、Doublecortinなどが同定されているがこれらの分子もまた中心体や微小管に局在することが報告されている。また、一次繊毛の形成および機能に関連する遺伝子の変異はJoubert症候群Bardet – Biedl症候群等のciliopathyと呼ばれる疾患を引き起こすことが知られている。

関連項目

参考文献

  1. Brito, D.A., Gouveia, S.M., & Bettencourt-Dias, M. (2012).
    Deconstructing the centriole: structure and number control. Current opinion in cell biology, 24(1), 4-13. [PubMed:22321829] [WorldCat] [DOI]
  2. Megraw, T.L., Sharkey, J.T., & Nowakowski, R.S. (2011).
    Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends in cell biology, 21(8), 470-80. [PubMed:21632253] [PMC] [WorldCat] [DOI]
  3. Wang, X., Tsai, J.W., Imai, J.H., Lian, W.N., Vallee, R.B., & Shi, S.H. (2009).
    Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461(7266), 947-55. [PubMed:19829375] [PMC] [WorldCat] [DOI]
  4. Kuijpers, M., & Hoogenraad, C.C. (2011).
    Centrosomes, microtubules and neuronal development. Molecular and cellular neurosciences, 48(4), 349-58. [PubMed:21722732] [WorldCat] [DOI]
  5. Tanaka, T., Serneo, F.F., Higgins, C., Gambello, M.J., Wynshaw-Boris, A., & Gleeson, J.G. (2004).
    Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. The Journal of cell biology, 165(5), 709-21. [PubMed:15173193] [PMC] [WorldCat] [DOI]
  6. Umeshima, H., Hirano, T., & Kengaku, M. (2007).
    Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16182-7. [PubMed:17913873] [PMC] [WorldCat] [DOI]
  7. Tsai, J.W., Bremner, K.H., & Vallee, R.B. (2007).
    Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nature neuroscience, 10(8), 970-9. [PubMed:17618279] [WorldCat] [DOI]
  8. Solecki, D.J., Trivedi, N., Govek, E.E., Kerekes, R.A., Gleason, S.S., & Hatten, M.E. (2009).
    Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron, 63(1), 63-80. [PubMed:19607793] [PMC] [WorldCat] [DOI]
  9. Lee, J.E., & Gleeson, J.G. (2011).
    Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Current opinion in neurology, 24(2), 98-105. [PubMed:21386674] [PMC] [WorldCat] [DOI]

(執筆者:梅嶋 宏樹 担当編集委員:村上 冨士夫)