「トランスジェニック動物」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
23行目: 23行目:
 古典的な遺伝学では、ある表現型を示す突然変異体において、どの遺伝子座に突然変異が存在するかを調べることで、遺伝子と機能の関係を調べる(順遺伝学的手法)。しかしこの方法は、突然変異の位置と表現型の相関関係のみを明らかにするという点で、真の意味での遺伝子の機能証明とは言えなかった。そこで、より直接的な遺伝子機能の証明のために、トランスジェニック動物の作製による特定遺伝子の機能亢進や機能阻害の試みがなされるようになった(逆遺伝学的手法)。  
 古典的な遺伝学では、ある表現型を示す突然変異体において、どの遺伝子座に突然変異が存在するかを調べることで、遺伝子と機能の関係を調べる(順遺伝学的手法)。しかしこの方法は、突然変異の位置と表現型の相関関係のみを明らかにするという点で、真の意味での遺伝子の機能証明とは言えなかった。そこで、より直接的な遺伝子機能の証明のために、トランスジェニック動物の作製による特定遺伝子の機能亢進や機能阻害の試みがなされるようになった(逆遺伝学的手法)。  


 トランスジェニック動物の作製はマウスで初めて報告され、続いてショウジョウバエでも報告された。最初のトランスジェニックマウスは、1970年代にRudolf Jaenischらにより作製された<ref><pubmed> 4364530 </pubmed></ref>,<ref><pubmed> 1063407</pubmed></ref>。Jaenischらは、レトロウイルスが自身の遺伝子を宿主細胞のゲノムDNAに挿入する性質を利用し、レトロウイルス由来の遺伝子を持つトランスジェニックマウスを作製した。ただし、この方法で導入した外来遺伝子の発現量は低くかつ不均一であったため、応用の観点から有用な技術であるかは不明であった(これはおそらくマウス細胞が自己防衛のために、レトロウイルス由来の遺伝子の発現を抑制したことに因る)。その後1980年にJon Gordon、Frank Ruddleらにより、現在の主流となっているマウス受精卵前核にDNAを注入するという方法が初めて実戦された<ref><pubmed>6261253</pubmed></ref>。この方法だと高い発現量が得られる上に、非常に大きな遺伝子も導入できる利点がある。  
 トランスジェニック動物の作製はマウスで初めて報告され、続いてショウジョウバエでも報告された。最初のトランスジェニックマウスは、1970年代にRudolf Jaenischらにより作製された<ref><pubmed> 4364530 </pubmed></ref>,<ref><pubmed> 1063407</pubmed></ref>。Jaenischらは、レトロウイルスが自身の遺伝子を宿主細胞のゲノムDNAに挿入する性質を利用し、レトロウイルス由来の遺伝子を持つトランスジェニックマウスを作製した。ただし、この方法で導入した外来遺伝子の発現量は低くかつ不均一であったため、応用の観点から有用な技術であるかは不明であった(これはおそらくマウス細胞が自己防衛のために、レトロウイルス由来の遺伝子の発現を抑制したことに因る)。その後1980年にJon Gordon、Frank Ruddleらにより、現在の主流となっているマウス受精卵前核にDNAを注入するという方法が初めて実践された<ref><pubmed>6261253</pubmed></ref>。この方法だと高い発現量が得られる上に、非常に大きな遺伝子も導入できる利点がある。  


 遺伝学の研究材料として古くから利用されてきたショウジョウバエでも、1982年にAllan Spradling、Gerald Rubinらによって外来遺伝子の導入方法が確立された <ref><pubmed> 6289435 </pubmed></ref>,<ref><pubmed> 6289436</pubmed></ref>。ショウジョウバエの場合は、トランスポゾンが自身のDNAをゲノム中に挿入する性質を利用する。  
 遺伝学の研究材料として古くから利用されてきたショウジョウバエでも、1982年にAllan Spradling、Gerald Rubinらによって外来遺伝子の導入方法が確立された <ref><pubmed> 6289435 </pubmed></ref>,<ref><pubmed> 6289436</pubmed></ref>。ショウジョウバエの場合は、トランスポゾンが自身のDNAをゲノム中に挿入する性質を利用する。  


 なお、マウスで初期に試されたレトロウイルスを用いた方法も、近年再び大きく注目されるようになった。レトロウイルスの中でもレンチウイルスを用いることで、外来遺伝子が発現しにくい問題が克服され、導入効率も非常に高いためである。例えば、霊長類初のトランスジェニック動物であるトランスジェニックマーモセットは、レンチウイルスを利用して作製された<ref><pubmed>19478777</pubmed></ref>。従って、当初の3つのアプローチ(DNAの直接注入・トランスポゾンの利用・レトロウイルスの利用)が現在でも主要なストラテジーであると言える。    また、1980年代後半には、ゲノム上の特定の遺伝子を破壊するために、従来のトランスジェニックマウス作製技術と、DNA相同組換えや胚性幹細胞(ES細胞)の培養技術などを組み合わせ、外来DNAを目的の遺伝子の途中に挿入したいわゆるノックアウトマウスが作製された(詳しくは[[標的遺伝子組換え]]の項目を参照)。  
 なお、マウスで初期に試されたレトロウイルスを用いた方法も、近年再び大きく注目されるようになった。レトロウイルスの中でもレンチウイルスを用いることで、外来遺伝子が発現しにくい問題が克服され、導入効率も非常に高いためである。例えば、霊長類初のトランスジェニック動物であるトランスジェニックマーモセットは、レンチウイルスを利用して作製された<ref><pubmed>19478777</pubmed></ref>。従って、当初の3つのアプローチ(DNAの直接注入・トランスポゾンの利用・レトロウイルスの利用)が現在でも主要なストラテジーであると言える。
 
 また、1980年代後半には、ゲノム上の特定の遺伝子を破壊するために、従来のトランスジェニックマウス作製技術と、DNA相同組換えや胚性幹細胞(ES細胞)の培養技術などを組み合わせ、外来DNAを目的の遺伝子の途中に挿入したいわゆるノックアウトマウスが作製された(詳しくは[[標的遺伝子組換え]]の項目を参照)。  


<br> <br> <br>  
<br> <br> <br>  
33行目: 35行目:
== 外来遺伝子をゲノム上のランダムな位置に挿入する場合  ==
== 外来遺伝子をゲノム上のランダムな位置に挿入する場合  ==


 特定の遺伝子を含むDNAを生殖細胞や[[wikipedia:ja:受精卵|受精卵]]などに注入すると、一定の確率でDNAはゲノム上のランダムな位置に挿入され、その細胞が生殖可能な成体へと成長した際には次世代へと受け継がれるようになる。注入するDNAは、目的の遺伝子に[[プロモーター]]や[[エンハンサー]]、[[wikipedia:ja:イントロン|イントロン]]や[[wikipedia:ja:ポリアデニル化|ポリA付加シグナル]]なども加えることで、特定の組織や細胞種で効率よく発現させることが可能である。ただし実際には、導入遺伝子の発現は挿入されたゲノム上の位置の影響(位置効果;position effect)や挿入された導入遺伝子の数(コピー数;copy number)の影響も受けるため、予想した発現パターンと異なることも多い。また動物種によっては、外来遺伝子が挿入された個体と挿入されなかった個体の識別を容易にするために、何らかのマーカー遺伝子(marker gene)も同時に注入することがある。後述の標的遺伝子組換えと比べると手順の煩雑さが少なく、現在では[[マウス]]、[[ショウジョウバエ]]、[[線虫]]、[[ゼブラフィッシュ]]などの古典的な[[モデル動物]]以外の様々な動物種でも方法が確立されている。 <br>  マウス以外の多くの動物種では、単にDNAを注入しただけではゲノム中に取り込まれる確率が非常に低い。しかしこうした動物でも、[[wikipedia:ja:トランスポゾン|トランスポゾン]]や[[ウイルスベクター]]、[[wikipedia:ja:DNAエンドヌクレアーゼ|DNAエンドヌクレアーゼ]]などを利用することで、トランスジェニック動物の作製が可能となることがある。ここでは、マウスとその他の哺乳類動物種、ショウジョウバエ、線虫についてより詳しく紹介する。 <br> [[Image:Yuhayashi fig 1.jpg|thumb|right|500px|トランスジェニックマウスの作製方法]] <br>  
 特定の遺伝子を含むDNAを生殖細胞や[[wikipedia:ja:受精卵|受精卵]]などに注入すると、一定の確率でDNAはゲノム上のランダムな位置に挿入され、その細胞が生殖可能な成体へと成長した際には次世代へと受け継がれるようになる。注入するDNAは、目的の遺伝子に[[プロモーター]]や[[エンハンサー]]、[[wikipedia:ja:イントロン|イントロン]]や[[wikipedia:ja:ポリアデニル化|ポリA付加シグナル]]なども加えることで、特定の組織や細胞種で効率よく発現させることが可能である。ただし実際には、導入遺伝子の発現は挿入されたゲノム上の位置の影響(位置効果;position effect)や挿入された導入遺伝子の数(コピー数;copy number)の影響も受けるため、予想した発現パターンと異なることも多い。また動物種によっては、外来遺伝子が挿入された個体と挿入されなかった個体の識別を容易にするために、何らかのマーカー遺伝子(marker gene)も同時に注入することがある。後述の標的遺伝子組換えと比べると手順の煩雑さが少なく、現在では[[マウス]]、[[ショウジョウバエ]]、[[線虫]]、[[ゼブラフィッシュ]]などの古典的な[[モデル動物]]以外の様々な動物種でも方法が確立されている。 <br>  マウス以外の多くの動物種では、単にDNAを注入しただけではゲノム中に取り込まれる確率が非常に低い。しかしこうした動物でも、[[wikipedia:ja:トランスポゾン|トランスポゾン]]や[[ウイルスベクター]]、[[wikipedia:ja:DNAエンドヌクレアーゼ|DNAエンドヌクレアーゼ]]などを利用することで、トランスジェニック動物の作製が可能となることがある。ここでは、マウスとその他の哺乳類動物種、ショウジョウバエ、線虫についてより詳しく紹介する。 <br> [[Image:Yuhayashi fig 1.jpg|thumb|right|500px|図1 トランスジェニックマウスの作製方法]] <br>  


=== マウス ===
=== マウス (図1、図2) ===


 マウスの場合は、受精卵前核にDNAを顕微注入する方法が一般的である<ref name="ref1">'''Andras Nagy, Marina Gertsenstein, Kristina Vintersten, Richard Behringer'''<br>Manipulating the mouse embryo: A Laboratory Manual 3rd Ed.<br>'' Cold Spring Harbor Laboratory Press'':2003</ref>。これにより外来遺伝子はゲノム上の一か所に、複数コピーが一列に並んだ状態で挿入される。通常トランスジェニックマウスと言うと、このようにして外来遺伝子を導入したマウスを指し、後述の標的遺伝子組換えを行ったマウス([[ノックインマウス]]や[[ノックアウトマウス]]や[[Floxed mouse]])と区別する(ただし、厳密には全てトランスジェニックニック動物である)。 <br> [[Image:Yuhayashi fig 2.jpg|thumb|right|350px|哺乳類受精卵への遺伝子導入方法<br>(A) 受精卵の前核へのDNAの注入による遺伝子導入(マウスで主流)<br>(B) レンチウイルス感染による受精卵への遺伝子導入(マウス以外の動物種で主流)<br>(A)だと卵細胞内のさらに前核までガラス管を挿入しなければならないのに対し、(B)では卵細胞外の空間に注入すれば良く、細胞質の不透明な動物種でも容易にできる。しかも注入した外来遺伝子がゲノム中に取り込まれる確率が高いため、少数の受精卵で済む。従って受精卵の高価な、マウス以外の動物ではこちらの方法がよく用いられる。(B)の短所としては、目的遺伝子をレンチウイルスに導入する手間がかかることや、導入できる遺伝子のサイズが限られていることなどが挙げられる。
 マウスの場合は、受精卵前核にDNAを顕微注入する方法が一般的である<ref name="ref1">'''Andras Nagy, Marina Gertsenstein, Kristina Vintersten, Richard Behringer'''<br>Manipulating the mouse embryo: A Laboratory Manual 3rd Ed.<br>'' Cold Spring Harbor Laboratory Press'':2003</ref>。これにより外来遺伝子はゲノム上の一か所に、複数コピーが一列に並んだ状態で挿入される。通常トランスジェニックマウスと言うと、このようにして外来遺伝子を導入したマウスを指し、後述の標的遺伝子組換えを行ったマウス([[ノックインマウス]]や[[ノックアウトマウス]]や[[Floxed mouse]])と区別する(ただし、厳密には全てトランスジェニックニック動物である)。 <br> [[Image:Yuhayashi fig 2.jpg|thumb|right|350px|図2 哺乳類受精卵への遺伝子導入方法<br>(A) 受精卵の前核へのDNAの注入による遺伝子導入(マウスで主流)<br>(B) レンチウイルス感染による受精卵への遺伝子導入(マウス以外の動物種で主流)<br>(A)だと卵細胞内のさらに前核までガラス管を挿入しなければならないのに対し、(B)では卵細胞外の空間に注入すれば良く、細胞質の不透明な動物種でも容易にできる。しかも注入した外来遺伝子がゲノム中に取り込まれる確率が高いため、少数の受精卵で済む。従って受精卵の高価な、マウス以外の動物ではこちらの方法がよく用いられる。(B)の短所としては、目的遺伝子をレンチウイルスに導入する手間がかかることや、導入できる遺伝子のサイズが限られていることなどが挙げられる。
]] <br>  
]] <br>  


=== マウス以外の哺乳類動物 ===
=== マウス以外の哺乳類動物 (図2) ===


 受精卵前核にDNAを顕微注入する、というマウスで一般的な方法は、他の哺乳類動物にも適応可能な場合が多い。しかしながらこの方法だと導入効率が悪く、通常数百個程度の受精卵が必要となり、マウス以外では非常に高価となる。さらに、多くの動物はマウスと異なり受精卵の細胞質が不透明なため、前核への正確な注入が困難となり、一層効率が下がる。そこで近年は、レトロウイルスの一種であるレンチウイルスを用いる方法が大きく注目されている。レトロウイルスは自身の遺伝子を感染した宿主細胞のゲノム中に挿入する性質がある。中でも、レンチウイルスは分裂中でない細胞にも感染しやすいことや、その遺伝子が宿主細胞によるサイレンシングを受けにくいなどの性質から、トランスジェニック動物作製に非常に有用である。外来遺伝子をDNAの状態で直接受精卵に注入する場合は卵細胞外内の前核に注入する必要がある。これにに対し、あらかじめレンチウイルスに導入してから注入する場合は、卵細胞外にある囲卵腔という空間に注入すればよく、しかも効率は遥かに高い。これまでに、マウス、ラット、ブタ、ウシなどに加え、霊長類であるコモンマーモセットでも、レンチウイルスを用いることで、効率よくトランスジェニック動物が作製できることが報告されている。  
 受精卵前核にDNAを顕微注入する、というマウスで一般的な方法は、他の哺乳類動物にも適応可能な場合が多い。しかしながらこの方法だと導入効率が悪く、通常数百個程度の受精卵が必要となり、マウス以外では非常に高価となる。さらに、多くの動物はマウスと異なり受精卵の細胞質が不透明なため、前核への正確な注入が困難となり、一層効率が下がる。そこで近年は、レトロウイルスの一種であるレンチウイルスを用いる方法が大きく注目されている。レトロウイルスは自身の遺伝子を感染した宿主細胞のゲノム中に挿入する性質がある。中でも、レンチウイルスは分裂中でない細胞にも感染しやすいことや、その遺伝子が宿主細胞によるサイレンシングを受けにくいなどの性質から、トランスジェニック動物作製に非常に有用である。外来遺伝子をDNAの状態で直接受精卵に注入する場合は卵細胞外内の前核に注入する必要がある。これにに対し、あらかじめレンチウイルスに導入してから注入する場合は、卵細胞外にある囲卵腔という空間に注入すればよく、しかも効率は遥かに高い。これまでに、マウス、ラット、ブタ、ウシなどに加え、霊長類であるコモンマーモセットでも、レンチウイルスを用いることで、効率よくトランスジェニック動物が作製できることが報告されている。  
60行目: 62行目:
 外来遺伝子をゲノム上の特定の位置に挿入することを標的遺伝子組換え;gene targetingという。トランスジェニック動物というと、前述の外来遺伝子がゲノム上のランダムな位置に挿入する場合のみを指し、標的遺伝子組換えにより作製した動物を含めないことが多い(厳密にはどちらもトランスジェニック動物であるが)。本項では標的遺伝子組換えについても簡単に紹介する(詳しくは[[標的遺伝子組換え]]の項目を参照)。  
 外来遺伝子をゲノム上の特定の位置に挿入することを標的遺伝子組換え;gene targetingという。トランスジェニック動物というと、前述の外来遺伝子がゲノム上のランダムな位置に挿入する場合のみを指し、標的遺伝子組換えにより作製した動物を含めないことが多い(厳密にはどちらもトランスジェニック動物であるが)。本項では標的遺伝子組換えについても簡単に紹介する(詳しくは[[標的遺伝子組換え]]の項目を参照)。  


 標的遺伝子組換えは、[[wikipedia:ja:相同組換え|相同組換え]](homologous recombination)という現象を利用する。具体的には、導入したい遺伝子の前後にゲノム上の目的部分の前後と同じDNA配列をつなぐと、稀に外来遺伝子がゲノム上の目的部分を置換する形で挿入される。これを利用し、外来遺伝子をゲノム上の特定の遺伝子の必須な部分と置換させることで、その遺伝子を破壊することができる(ノックアウト)。また、蛍光タンパク質遺伝子などを特定の細胞種に発現させたい場合に、その細胞種に発現することが知られる遺伝子の3’末端部分などに挿入することがある(ノックイン)。ノックインだと、前述のランダムな挿入と異なり位置効果の心配がなく、コピー数もコントロールでき、必要なシスエレメントも全て揃っているため、期待通りの発現パターンを得やすい。ただし、ランダムな挿入と異なり、標的遺伝子組換えの手法が確立されている動物種は非常に限られている。  
 標的遺伝子組換えには、[[wikipedia:ja:相同組換え|相同組換え]](homologous recombination)という現象を利用する。具体的には、導入したい遺伝子の前後にゲノム上の目的部分の前後と同じDNA配列をつなぐと、稀に外来遺伝子がゲノム上の目的部分を置換する形で挿入される。これを利用し、外来遺伝子をゲノム上の特定の遺伝子の必須な部分と置換させることで、その遺伝子を破壊することができる(ノックアウト)。また、蛍光タンパク質遺伝子などを特定の細胞種に発現させたい場合に、その細胞種に発現することが知られる遺伝子の3’末端部分などに挿入することがある(ノックイン)。ノックインだと、前述のランダムな挿入と異なり位置効果の心配がなく、コピー数もコントロールでき、必要なシスエレメントも全て揃っているため、期待通りの発現パターンを得やすい。ただし、ランダムな挿入と異なり、標的遺伝子組換えの手法が確立されている動物種は非常に限られている。  


<br>  
<br>  
32

回編集