脳室帯

提供:脳科学辞典
2013年11月25日 (月) 19:54時点におけるNorihitokishimoto (トーク | 投稿記録)による版

ナビゲーションに移動 検索に移動

英語名:Ventricular zone 独:ventrikulare zone 仏:ventriculaire zone 英語略名 : VZ

 脳室帯は、発生期の脳内における脳室を取り囲む脳室周囲層の最も脳室側 (内側) の一層である。1970 年にBoulder Committeeが、発生初期の中枢神経系を脳室側から軟膜にむかって4つの区域 (zone) に分け、脳室側から脳室帯(ventricular zone), 脳室下帯(subventricular zone), 中間帯(intermediate zone), 辺縁帯(marginal zone)と命名した[1](図1)。発生初期の脳室帯は神経上皮細胞と呼ばれる神経幹細胞によって構成され、大脳皮質を構成するための神経系細胞の供給源となっている。

ファイル:Figxx.png
図1. 神経上皮細胞の分化過程
 神経管を構成する神経上皮細胞はニューロンを産生し、脳の基本構造をつくる。神経上皮細胞は、胎児期から新生児期の間、脳室面と脳表層に突起を伸ばしており、放射状グリアと呼ばれる。成体期になると、側脳室外側壁の放射状グリアは上衣細胞とアストロサイトに分化する(文献2改変)。


脳室帯を構成する細胞

 脳室帯を構成する細胞は、発生がすすむにつれて性質が変化する。発生のステージに従って形態が変化するとともに、分化能力も変化していく(図1)[1]。 発生初期においては、神経管の壁は神経上皮と呼ばれ、脳室面と基底膜(後の軟膜)の間に挟まれた神経幹細胞によって構成されている。皮質板(cortical plate)が形成される頃になると、神経上皮の肥厚に伴って神経幹細胞は放射状に伸長した形態を示し、放射状グリアと呼ばれるようになる。この時、放射状グリアは細胞体を脳室帯に残したまま、伸長した放射状線維の先端を基底膜に付着させることによって上皮構造を維持している。幹細胞から生まれた新生ニューロンは、脳室帯を離れて辺縁帯直下まで放射状に移動する[2]

 新生児期になると、側脳室外側壁の放射状グリアは、神経幹細胞の性質をもつアストロサイトと運動性の繊毛を有する上衣細胞へ分化する[3]。このとき上衣細胞が脳室面に並び、その隣(皮質側)の層が脳室下帯になる。この上衣細胞の層と脳室下帯の構造は、その後成体期でも維持される。元々発生期の脳内の層を表す言葉として命名 [1] された脳室帯および脳室下帯と区別するため、成体脳における上衣細胞の単層を上衣層(ependymal layer)、その内側の層(皮質側)を上衣下層(subependymal layer)と呼ぶこともある。


神経上皮細胞/放射状グリアのマーカー

 神経上皮細胞/放射状グリアの分子マーカーがいくつか同定されている[4] [5]。Sox2(SRY-box 2)[6]および Pax6paired box 6)[7] [8]などの転写因子や、脳に存在する脂肪酸結合タンパク質であるFABP7(fatty acid biding protein 7)/ BLBPbrain lipid binding protein[9] [10]、中間径フィラメントタンパク質であるnestin[11]、放射状グリアのマーカーであるRC2(radial glial cell marker-2)[12]、RNA結合タンパク質 Musashi1[12]などは発生初期の神経上皮細胞から発現している。これらのうちPax6は神経上皮細胞の未分化性の維持に重要であり、FABP7の発現を制御する[13]。中間径フィラメントタンパク質であるvimentin [14]、カルシウム結合タンパク質であるS100β[15]、アストロサイト特異的なグルタミン酸トランスポーター (GLAST) [16]、グルタミン合成酵素 (GS) [17]、細胞外マトリックス糖タンパク質であるtenascin-C (TN-C)[8]などは放射状グリアに発現する。


神経上皮細胞の細胞分裂と大脳皮質の形成

 神経上皮細胞の核は、細胞周期に応じて脳室面から脳膜面の間を上下にエレベーター運動し、脳室面で細胞分裂(M期)を行う[18] [19] (図2)。神経上皮が「偽重層」を示すのはこのためである。発生初期の神経上皮細胞は対称分裂することによって自己複製をくり返す。この対称分裂によって、脳室面に並ぶ神経上皮細胞数が爆発的に増加し、脳室帯を拡大する。対称分裂による神経上皮細胞の拡大産生期が終わる頃、非対称分裂が始まる。すなわち、1つの神経上皮細胞から1つの神経上皮細胞と1つの新生ニューロンが産生される。新生ニューロンは、脳室帯から軟膜側へ放射状に移動し、適切な場所で移動を停止し、成熟ニューロンへと分化していく。このような新生ニューロンの放射状移動によって、脳は放射状に拡大(radial expansion)していく。このように、神経上皮細胞の非対称分裂がくり返されることによって、脳室帯の維持と大脳皮質の形成を同時になし得ている[20]

ファイル:Figxx.png
図2. 神経上皮細胞の細胞周期とエレベーター運動
 神経上皮細胞は核のエレベーター運動を行っており、この運動は細胞周期のリズムと連動している。脳室面で対称分裂あるいは非対称分裂が起こる。


関連事項

脳室下帯
上衣細胞
エレベーター運動
大脳皮質の発生


参考文献

  1. 1.0 1.1 1.2 (1970).
    Embryonic vertebrate central nervous system: revised terminology. The Boulder Committee. The Anatomical record, 166(2), 257-61. [PubMed:5414696] [WorldCat] [DOI]
  2. Kriegstein, A., & Alvarez-Buylla, A. (2009).
    The glial nature of embryonic and adult neural stem cells. Annual review of neuroscience, 32, 149-84. [PubMed:19555289] [PMC] [WorldCat] [DOI]
  3. Spassky, N., Merkle, F.T., Flames, N., Tramontin, A.D., García-Verdugo, J.M., & Alvarez-Buylla, A. (2005).
    Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(1), 10-8. [PubMed:15634762] [PMC] [WorldCat] [DOI]
  4. Mori, T., Buffo, A., & Götz, M. (2005).
    The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Current topics in developmental biology, 69, 67-99. [PubMed:16243597] [WorldCat] [DOI]
  5. Malatesta, P., Hartfuss, E., & Götz, M. (2000).
    Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development (Cambridge, England), 127(24), 5253-63. [PubMed:11076748] [WorldCat]
  6. Episkopou, V. (2005).
    SOX2 functions in adult neural stem cells. Trends in neurosciences, 28(5), 219-21. [PubMed:15866195] [WorldCat] [DOI]
  7. Stoykova, A., Treichel, D., Hallonet, M., & Gruss, P. (2000).
    Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(21), 8042-50. [PubMed:11050125] [PMC] [WorldCat]
  8. 8.0 8.1 Götz, M., Stoykova, A., & Gruss, P. (1998).
    Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21(5), 1031-44. [PubMed:9856459] [WorldCat] [DOI]
  9. Feng, L., Hatten, M.E., & Heintz, N. (1994).
    Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron, 12(4), 895-908. [PubMed:8161459] [WorldCat] [DOI]
  10. Kurtz, A., Zimmer, A., Schnütgen, F., Brüning, G., Spener, F., & Müller, T. (1994).
    The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development (Cambridge, England), 120(9), 2637-49. [PubMed:7956838] [WorldCat]
  11. Frederiksen, K., & McKay, R.D. (1988).
    Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience, 8(4), 1144-51. [PubMed:3357014] [WorldCat]
  12. 12.0 12.1 Kaneko, Y., Sakakibara, S., Imai, T., Suzuki, A., Nakamura, Y., Sawamoto, K., ..., & Okano, H. (2000).
    Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Developmental neuroscience, 22(1-2), 139-53. [PubMed:10657706] [WorldCat] [DOI]
  13. Arai, Y., Funatsu, N., Numayama-Tsuruta, K., Nomura, T., Nakamura, S., & Osumi, N. (2005).
    Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(42), 9752-61. [PubMed:16237179] [PMC] [WorldCat] [DOI]
  14. Schnitzer, J., Franke, W.W., & Schachner, M. (1981).
    Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. The Journal of cell biology, 90(2), 435-47. [PubMed:7026573] [PMC] [WorldCat] [DOI]
  15. Vives, V., Alonso, G., Solal, A.C., Joubert, D., & Legraverend, C. (2003).
    Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. The Journal of comparative neurology, 457(4), 404-19. [PubMed:12561079] [WorldCat] [DOI]
  16. Shibata, T., Yamada, K., Watanabe, M., Ikenaka, K., Wada, K., Tanaka, K., & Inoue, Y. (1997).
    Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, 17(23), 9212-9. [PubMed:9364068] [WorldCat]
  17. Akimoto, J., Itoh, H., Miwa, T., & Ikeda, K. (1993).
    Immunohistochemical study of glutamine synthetase expression in early glial development. Brain research. Developmental brain research, 72(1), 9-14. [PubMed:8095865] [WorldCat] [DOI]
  18. Sauer FC
    Mitosis in the neural tube
    J. Comp. Neurol.: 1935, 62(2);377-405
  19. Kosodo, Y., Suetsugu, T., Suda, M., Mimori-Kiyosue, Y., Toida, K., Baba, S.A., ..., & Matsuzaki, F. (2011).
    Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. The EMBO journal, 30(9), 1690-704. [PubMed:21441895] [PMC] [WorldCat] [DOI]
  20. Rakic, P. (1995).
    A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends in neurosciences, 18(9), 383-8. [PubMed:7482803] [WorldCat] [DOI]


(執筆者 : 岸本憲人、澤本和延  担当編集委員 : 大隅典子)