29
回編集
細編集の要約なし |
細編集の要約なし |
||
56行目: | 56行目: | ||
==== ドパミン系と情動 ==== | ==== ドパミン系と情動 ==== | ||
脳内のPGE<sub>2</sub>は、疾病応答のみならず、心理ストレス下での情動制御にも関与することが示されている<ref name="ref53"><pubmed> 21116297 </pubmed></ref>。EP1欠損マウスは、社会行動の破綻と攻撃性の亢進、断崖からの異常な飛び降り行動、音驚愕反応の亢進を呈する<ref name="ref54"><pubmed> 16247016 </pubmed></ref>。一方、オープンフィールドにおける運動量、高架式十字迷路における不安行動、Y字迷路における短期記憶学習、ホームケージにおける行動には明らかな異常を認めない。これらの行動異常から、心理ストレス下での衝動性制御におけるEP1の役割が提唱されている。この行動異常の一部はEP1阻害薬投与により再現される。さらにEP1アゴニストの脳室内投与により攻撃性が抑制されることから、EP1の作用点は脳内にあることが示唆された<ref name="ref54" />。 | |||
衝動性の制御にはドパミンなどモノアミン系の重要性が知られている。ドパミン放出の生化学的指標であるドパミン代謝回転計測や脳微小透析法による細胞外ドパミン濃度計測から、EP1欠損マウスの前頭前皮質や線条体ではドパミン放出が亢進していることが示唆された<ref name="ref54" /><ref name="ref55"><pubmed> 20092576 </pubmed></ref>。さらにEP1欠損マウスの攻撃性や音驚愕反応の亢進がドパミンD1様受容体阻害薬により消失することから<ref name="ref54" />、EP1欠損マウスの行動異常の少なくとも一部はドパミン系亢進によると考えられている。このEP1作用に合致し、EP1アゴニストにより黒質緻密部のドパミン神経細胞への抑制性シナプス入力が増強されることが示されている<ref name="ref55" />。 | |||
EP1によるドパミン系抑制は反復ストレスによる情動変容誘導にも重要である<ref name="ref56"><pubmed> 22442093 </pubmed></ref>。反復社会挫折ストレスは社会的忌避行動や不安様行動を誘導するが、EP1欠損マウスではこれらの情動変容が観察されない。社会挫折ストレスは前頭前皮質に投射する腹側被蓋野(ventral tegmental area; VTA)ドパミン神経細胞を活性化し、社会的忌避行動の発現を抑制する。社会挫折ストレスの反復により前頭前皮質ドパミン系の応答は抑制されるが、EP1欠損マウスではこの前頭前皮質ドパミン系の抑制が消失する。さらにEP1欠損マウスへのドパミンD1様受容体阻害薬の投与により社会的忌避行動が回復することから、PGE<sub>2</sub>-EP1系による前頭前皮質ドパミン系の抑制が反復ストレスによる情動変容に関わることが示唆される。反復ストレスによる社会的忌避行動誘導にはCOX-1が特異的に関与する<ref name="ref56" />。脳内ではCOX-1はミクログリアに発現しており、反復ストレスによりミクログリア活性化が誘導されることが組織学的に示唆されている<ref name="ref56" />。これらの結果は、反復ストレスによる情動変容にミクログリア由来のPGE<sub>2</sub>産生が関与する可能性を提示するが、今後の検証が必要である。 | |||
一方、EP1欠損マウスでは、細胞外ドパミン濃度を上昇させるコカインやドパミンD1様受容体アゴニストの全身投与による運動量増加の度合いが減弱している<ref name="ref57"><pubmed> 18032663 </pubmed></ref>。EP1は線条体では直接路と間接路を形成する中型有棘細胞に発現している。線条体スライスにおけるEP1活性化は、ドパミンD1受容体活性化によるDARPP-32 Thr34リン酸化亢進とドパミンD2受容体活性化によるDARPP-32 Thr34リン酸化抑制のいずれも促進することが示されている。 | |||
==== シナプス可塑性と記憶学習 ==== | ==== シナプス可塑性と記憶学習 ==== | ||
海馬へのPG合成阻害薬の投与により、水迷路試験における海馬依存的な長期的空間学習の障害が認められる<ref name="ref58"><pubmed> 11917005 </pubmed></ref>。さらにEP2欠損マウスでも海馬依存的な文脈型恐怖条件付け<ref name="ref59"><pubmed> | |||
19416671 </pubmed></ref>や水迷路試験による長期的空間学習<ref name="ref60"><pubmed> 19012750 </pubmed></ref>が障害されるとの報告がある。この行動異常に合致し、EP2欠損マウスでは海馬の複数のシナプスでシナプス長期可塑性の異常が報告されている<ref name="ref59" /><ref name="ref60" />。一方で、海馬でのIL-1βの過剰発現は海馬でのPGE<sub>2</sub>産生と同時に、海馬依存的な文脈型恐怖条件付けの障害を惹起するが、この両者がCOX-1欠損マウスでは見られない<ref name="ref61"><pubmed> 20412387 </pubmed></ref>。さらに背側海馬へのPGE<sub>2</sub>の局所投与により、海馬依存的な文脈型恐怖条件付けが障害される<ref name="ref62"><pubmed> 18035502 </pubmed></ref>。これらの結果は、海馬機能における生理的なPGE<sub>2</sub>の役割に対し、過度のPGE<sub>2</sub>産生は海馬機能を障害する可能性を示唆している。 | |||
シナプス可塑性におけるPGの関与は大脳皮質や小脳でも報告されている。ラット視覚野の第IV層を刺激した際の第II/III層錐体細胞における興奮性シナプス応答は高周波数刺激によりシナプス長期増強を示すが、このシナプス長期増強はRNA干渉法によるEP2の発現抑制により減弱し、EP3の発現抑制により亢進する。この結果は、大脳皮質のシナプス長期増強においてEP2とEP3が反対の作用を持つことを示唆する<ref name="ref63"><pubmed> 17021176 </pubmed></ref>。小脳プルキニエ細胞のシナプス長期抑制はPG生成に関わるcPLA<sub>2</sub>α欠損マウスにより消失し、この異常が外来性に加えたアラキドン酸やPGD<sub>2</sub>、PGE<sub>2</sub>により正常化することも報告されているが、この作用を介達する受容体はまだ分かっていない<ref name="ref64"><pubmed> 20133605 </pubmed></ref>。 | |||
==== 脳機能的充血 ==== | ==== 脳機能的充血 ==== | ||
脳機能的充血とは、神経細胞の代謝亢進により細動脈が拡張されて生ずる局所的な脳血流量の増大である。COX-2欠損マウスやCOX-2阻害薬を投与したマウスでは、ひげ刺激により生ずる体性感覚野での機能的充血が起こらない<ref name="ref65"><pubmed> 10632605 </pubmed></ref>。アストロサイトにおける細胞内Ca2+の上昇は脳内の細動脈の拡張を誘導するが、この作用にPG合成酵素のCOX-1が関与することを示唆する報告もある<ref name="ref66"><pubmed> 16388306 </pubmed></ref>。しかしCOX-1欠損マウスでは、高炭酸ガス血症による脳血流増加は消失するのに対し、ひげ刺激による体性感覚野での機能的充血には異常を認めず<ref name="ref67"><pubmed> 11282894 </pubmed></ref>、COX-1の役割は確立していない。PGE<sub>2</sub>は強い大脳細動脈の拡張作用を示すことから<ref name="ref68"><pubmed> 382872 </pubmed></ref>、脳機能的充血におけるPGE<sub>2</sub>の関与が推測されている。 | |||
==== 高血圧 ==== | ==== 高血圧 ==== | ||
近年、血中のアンジオテンシンIIによる交感神経系の活性化と高血圧における脳弓下器官(subfornical organ; SFO)の関与が示唆されている。COX-1とEP1の遺伝子欠損マウスでは、アンジオテンシンII(angiotensin II; Ang II)投与による高血圧誘導が消失する<ref name="ref69"><pubmed> 22371360 </pubmed></ref>。AngIIはSFOにおける活性酸素種の誘導を惹起するが、この活性酸素種の誘導がCOX-1やEP1の遺伝子欠損およびEP1阻害薬により消失する。さらに、EP1欠損マウスの脳弓下器官にEP1を再導入すると、Ang IIによる高血圧が正常に誘導されることから、Ang IIはSFOのCOX-1-PGE2-EP1系を介して活性酸素種を発生させ、これが交感神経系の活性化と高血圧を誘導すると考えられている。 | |||
==== 神経細胞死 ==== | ==== 神経細胞死 ==== | ||
興奮毒性による神経細胞死におけるPGの役割は数多く報告されている。大脳皮質や海馬の興奮性神経細胞では、神経活動によりCOX-2が誘導される<ref name="ref21" />。またカイニン酸の局所投与によるグルタミン酸受容体刺激では8時間以降の後期でCOX-2とmPGES-1が血管内皮に発現誘導され、カイニン酸刺激による海馬でのPGE<sub>2</sub>産生誘導と神経細胞死の誘導にmPGES-1が関与することが遺伝子欠損マウスにより示されている<ref name="ref70"><pubmed> 19658194 </pubmed></ref>。 | |||
神経細胞死におけるPGE<sub>2</sub>の作用機序についてはPGE受容体欠損マウスを用いた解析から、少なくともEP1、EP2、EP3の関与が示されている。NMDAの局所投与による神経細胞死や脳虚血による梗塞巣はEP1阻害薬投与やEP1欠損マウスでは減弱する<ref name="ref71"><pubmed> 16432513 </pubmed></ref><ref name="ref72"><pubmed> 17600836 </pubmed></ref>。興奮毒性には細胞内Ca2+上昇が重要であるが、NMDA刺激によるNa+-Ca2+交換輸送体の機能低下と細胞内Ca2+上昇にEP1が関与することが遺伝子欠損マウスと特異的阻害薬により示されている<ref name="ref71" />。 | |||
一方、初代培養した海馬神経細胞や海馬スライスではグルタミン酸受容体活性化による神経細胞死がEP2アゴニストやアロステリックなEP2賦活薬により減弱することが報告されている<ref name="ref73"><pubmed> 14715958 </pubmed></ref><ref name="ref74"><pubmed> 20080612 </pubmed></ref>。この結果に合致し、EP2欠損マウスでは脳虚血モデルにおける梗塞巣が増大する<ref name="ref75"><pubmed> 15852374 </pubmed></ref>。しかし、後に詳述する神経変性疾患モデルマウスにおける神経細胞死はEP2欠損により減弱し<ref name="ref76"><pubmed> 16267225 </pubmed></ref><ref name="ref77"><pubmed> 18825663 </pubmed></ref>、ピロカルピン投与による神経細胞死もEP2阻害薬により減弱することから<ref name="ref78"><pubmed> 22323596 </pubmed></ref>、神経細胞死におけるEP2の役割は複雑である。 | |||
EP3の活性化は興奮毒性による神経細胞死を促進することが示されている。大脳皮質へのNMDA局所投与や海馬スライスへのグルタミン酸投与による神経細胞死はEP3の機能阻害により減弱し、EP3アゴニストにより増強する[79][80]。カイニン酸投与による神経細胞死に伴い、血管周囲に隣接するアストロサイトの突起endfeetにはEP3の発現が誘導され[70]、さらにカイニン酸投与によるアストロサイトでの細胞内Ca2+濃度上昇にEP3が関与していることが薬理学的に示されている[81]。これらの結果から、カイニン酸による血管内皮からのPGE2がアストロサイトのEP3に作用する可能性が指摘されている。 | |||
==== アルツハイマー病 ==== | ==== アルツハイマー病 ==== |
回編集