「物体探索」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
25行目: 25行目:
 動物に二つの同じ物体を探索させた後、ひとつの物体を新しい物体に置き換えると、正常な動物は新奇物体を優先して長時間探索する<ref name="Enna" /><ref name="Dix"><pubmed>10512585</pubmed></ref> 。
 動物に二つの同じ物体を探索させた後、ひとつの物体を新しい物体に置き換えると、正常な動物は新奇物体を優先して長時間探索する<ref name="Enna" /><ref name="Dix"><pubmed>10512585</pubmed></ref> 。


 Ennaceur&nbsp;&amp; Delacour (1988)<ref name="Enna" /> は45 cm x 65cmで高さ45 cmの壁のある実験アリーナに、2つの同じ物体を置き、これを[[wikipedia:ja:ラット|ラット]]に数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度、動物を2つの物体のある広場に戻し探索させた(テスト段階)。一方は遅延前に提示した物体と同じ物体(馴染物体)で、他方は異なる物体(新奇物体)である(図1)。新奇物体の探索時間が馴染物体の探索時間より長ければ、動物が以前に探索した物体を認知したと結論できる。
 Ennaceur&nbsp;&amp; Delacour (1988)<ref name="Enna" /> は45 cm x 65cmで高さ45 cmの壁のある実験アリーナに、2つの同じ物体を置き、これを[[wikipedia:ja:ラット|ラット]]に数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度、動物を2つの物体のある広場に戻し探索させた([[テスト]]段階)。一方は遅延前に提示した物体と同じ物体(馴染物体)で、他方は異なる物体(新奇物体)である(図1)。新奇物体の探索時間が馴染物体の探索時間より長ければ、動物が以前に探索した物体を認知したと結論できる。


 物体認知(弁別)には、物体の形、材質、匂い、色、明るさなど物体のもつ様々な特徴が手掛となりうる。ただし、ラットやマウスの視細胞の97%は暗所で機能する桿体細胞であるため、色の知覚に限界があることを考慮する必要がある。この他、物体認知に触覚が使用されることもある。一方の物体の表面に凸凹があり、他方の物体の表面が滑らかであれば、触覚が弁別の有効な手掛りとなるだろう。<ref><pubmed>20060020</pubmed></ref> 。
 物体認知(弁別)には、物体の形、材質、匂い、色、明るさなど物体のもつ様々な特徴が手掛となりうる。ただし、ラットやマウスの視細胞の97%は暗所で機能する桿体細胞であるため、色の[[知覚]]に限界があることを考慮する必要がある。この他、物体認知に[[触覚]]が使用されることもある。一方の物体の表面に凸凹があり、他方の物体の表面が滑らかであれば、触覚が弁別の有効な手掛りとなるだろう。<ref><pubmed>20060020</pubmed></ref> 。


 脳損傷や薬物投与によって馴染物体と新奇物体の探索時間に違いが見られなくなった場合、物体認知の障害が生じていると解釈できる。また、遅延時間に依存して障害が生じる場合には、[[作業記憶]]障害が生じている可能性を検討すべきである。
 脳損傷や薬物投与によって馴染物体と新奇物体の探索時間に違いが見られなくなった場合、物体認知の障害が生じていると解釈できる。また、遅延時間に依存して障害が生じる場合には、[[作業記憶]]障害が生じている可能性を検討すべきである。
43行目: 43行目:
 Dix & Aggleton(1999)<ref name="Dix" />は100 cm x 100cmで高さ46 cmの壁のある実験アリーナに、2つの同じ物体を置き、これをラットに数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度動物を2つの物体のある広場に戻し探索させた(テスト段階)。この時、使用する2つの物体は見本段階と同じものであるが、片方の物体のみ、見本とは異なる位置に配置した(図2)。もし新しい位置に移動した物体への探索行動が増加すれば、物体の位置関係についての認知的処理が行われたとみなすことができる。  
 Dix & Aggleton(1999)<ref name="Dix" />は100 cm x 100cmで高さ46 cmの壁のある実験アリーナに、2つの同じ物体を置き、これをラットに数分間探索させた(見本段階)。一旦、ラットを広場から出して遅延をおき、再度動物を2つの物体のある広場に戻し探索させた(テスト段階)。この時、使用する2つの物体は見本段階と同じものであるが、片方の物体のみ、見本とは異なる位置に配置した(図2)。もし新しい位置に移動した物体への探索行動が増加すれば、物体の位置関係についての認知的処理が行われたとみなすことができる。  


 探索行動の変化は物体の配置の変化の仕方によって異なる<ref name="Thi1987">'''Thinus-Blanc, C., L. Bouzouba, K. Chaix, N. Chapuis, M. Durup, & B. Poucet'''<br>A study of spatial parameters encoded during exploration in hamsters''<br>''Journal of Experimental Psychology: Animal Behavior Processes'':1987,13,418-427</ref>。例えば、4つの物体を配置して馴致した後、第3セッションで1つの物体の配置を変化させると、配置が変わった物体に対して探索時間が増加した。
 探索行動の変化は物体の配置の変化の仕方によって異なる<ref name="Thi1987">'''Thinus-Blanc, C., L. Bouzouba, K. Chaix, N. Chapuis, M. Durup, & B. Poucet'''<br>A study of spatial parameters encoded during exploration in hamsters''<br>''Journal of Experimental Psychology: [[Animal]] Behavior Processes'':1987,13,418-427</ref>。例えば、4つの物体を配置して馴致した後、第3セッションで1つの物体の配置を変化させると、配置が変わった物体に対して探索時間が増加した。


 4つの物体の配置を4角形から3角形へと幾何学的に変化させると、配置が変わった物体と変わっていない物体いずれに対しても探索量が増加した。興味深いことに、幾何学的配置を保ったまま、物体間の距離のみが変わった場合には探索時間の増加はみられなかった。また、1つの物体を取り除くと、残った物体への探索量が増加した。  
 4つの物体の配置を4角形から3角形へと幾何学的に変化させると、配置が変わった物体と変わっていない物体いずれに対しても探索量が増加した。興味深いことに、幾何学的配置を保ったまま、物体間の距離のみが変わった場合には探索時間の増加はみられなかった。また、1つの物体を取り除くと、残った物体への探索量が増加した。  
81行目: 81行目:


===探索エラー===
===探索エラー===
 物体探索行動が開始された後も、しばしば探索エラーが生じる。Piagetは9月齢前後の乳児では、物体が目の前で衝立Aから衝立Bの後ろに移動しても、衝立Aの後ろを探し続ける「A-not-Bエラー」が生じることを指摘した。Diamondによるサルの前頭皮質損傷や研究やヒトの前頭皮質損傷患者を対象とした一連の研究により、「A-not-Bエラー」は前頭前野の未成熟によると考えられている。
 物体探索行動が開始された後も、しばしば探索エラーが生じる。Piagetは9月齢前後の乳児では、物体が目の前で衝立Aから衝立Bの後ろに移動しても、衝立Aの後ろを探し続ける「A-not-Bエラー」が生じることを指摘した。Diamondによるサルの前頭皮質損傷や研究やヒトの前頭皮質損傷患者を対象とした一連の研究により、「A-not-Bエラー」は[[前頭前野]]の未成熟によると考えられている。
 物体の特性を知覚レベルでは認識しているにもかかわらず、実際の探索行動が成功しない例は落下する物体の探索行動にも見られる。選好注視法を用いた実験では、物体が障害物によって妨げられている軌跡上を通過しないという固体性(solidity)の概念は、生後3,4カ月で獲得されることが確認されている。しかし、落下する物体を探索させる課題では2歳児でも探索エラーが多く見られた。この探索エラーは、固執傾向というよりむしろ、物体と障害物との空間的位置の表象を形成することの困難さや障害物に対する注意の欠如により生じると考えられている<ref>'''大杉 佳美・内山伊知郎'''<br>2,3歳児における固体性の認識に関する探索行動について<br>''行動科学'':2013,51,81-89</ref>。
 物体の特性を知覚レベルでは認識しているにもかかわらず、実際の探索行動が成功しない例は落下する物体の探索行動にも見られる。選好注視法を用いた実験では、物体が障害物によって妨げられている軌跡上を通過しないという固体性(solidity)の概念は、生後3,4カ月で獲得されることが確認されている。しかし、落下する物体を探索させる課題では2歳児でも探索エラーが多く見られた。この探索エラーは、固執傾向というよりむしろ、物体と障害物との空間的位置の表象を形成することの困難さや障害物に対する注意の欠如により生じると考えられている<ref>'''大杉 佳美・内山伊知郎'''<br>2,3歳児における固体性の認識に関する探索行動について<br>''行動科学'':2013,51,81-89</ref>。
==神経基盤  ==
==神経基盤  ==
 物体探索行動は新奇な物体の出現や物体の配置の変化など、環境内に生じた新たな変化によって引き起こされる行動である。この時、新奇な事象が行動の誘因であり、いわば報酬の役割をもつといえる。神経細胞レベルにおいても、新奇刺激が報酬系すなわちドーパミンニューロンの活動を引き起こすことが報告されている<ref><pubmed>9658025</pubmed></ref>。新奇刺激のインパクトによって反応の強度や持続性は異なるが、刺激が繰り返し提示されると、その活動は鎮静化していく。ドーパミンニューロンの障害によるおこるパーキンソン病の患者では新奇探索傾向が減少し、危険回避傾向が増加する<ref><pubmed>15201352</pubmed></ref>。同様の行動傾向を、ドーパミンD4受容体ノックアウトマウスが示すことが報告されている<ref><pubmed>10531457</pubmed></ref>。
 物体探索行動は新奇な物体の出現や物体の配置の変化など、環境内に生じた新たな変化によって引き起こされる行動である。この時、新奇な事象が行動の誘因であり、いわば報酬の役割をもつといえる。神経細胞レベルにおいても、新奇刺激が報酬系すなわち[[ドーパミン]]ニューロンの活動を引き起こすことが報告されている<ref><pubmed>9658025</pubmed></ref>。新奇刺激のインパクトによって反応の強度や持続性は異なるが、刺激が繰り返し提示されると、その活動は鎮静化していく。ドーパミンニューロンの障害によるおこるパーキンソン病の患者では新奇探索傾向が減少し、危険回避傾向が増加する<ref><pubmed>15201352</pubmed></ref>。同様の行動傾向を、ドーパミンD4受容体ノックアウトマウスが示すことが報告されている<ref><pubmed>10531457</pubmed></ref>。


 これまで、物体探索行動を指標として測定された物体認知の神経基盤としては、海馬が物体の空間的情報処理に関与するが、物体認知そのものには重要でないという一致した見解が得られてきた。主にげっ歯類を対象とする物体探索課題では、物体認知に関わる脳領域についての積極的な結果が得られていない。霊長類では非見本合わせ(nonmatching to sample)という手続きにより物体認知が測定されてきた。この課題の物体認識テストでは、見本試行において、テーブル上に見本物体が短時間提示され、選択試行では見本物体と同じ物体が新奇物体とともに提示される。動物が新奇物体を選択すると報酬が与えられる。この課題の空間認識テストでは、テーブル上の左右におかれたふた付の報酬ケースのうち、ランドマークとなる物体により近い方を選択すると報酬が得られる。下側頭葉 TE 野を損傷されたサルは、物体認識テストにおいて著しい障害を示したが、空間認識テストでは障害を示さなかった。一方、下頭頂酔葉PG野を損傷されたサルは、空間認識テストで障害を示したが、物体認識テストでは障害を示さなかった。このような結果から、Mishkinらは、同一の物体の情報処理が、処理内容によって異なる経路を介することを主張した<ref><pubmed>7126325</pubmed></ref> 。すなわち、視覚的に提示された物体について、空間的情報は一次視覚野から背側に流れる経路「where patyway」で処理され、物体認知は一次視覚野から腹側に流れる経路「what pathway」で処理されるとした。
 これまで、物体探索行動を指標として測定された物体認知の神経基盤としては、海馬が物体の空間的情報処理に関与するが、物体認知そのものには重要でないという一致した見解が得られてきた。主にげっ歯類を対象とする物体探索課題では、物体認知に関わる脳領域についての積極的な結果が得られていない。霊長類では非見本合わせ(nonmatching to sample)という手続きにより物体認知が測定されてきた。この課題の物体認識テストでは、見本試行において、テーブル上に見本物体が短時間提示され、選択試行では見本物体と同じ物体が新奇物体とともに提示される。動物が新奇物体を選択すると報酬が与えられる。この課題の空間認識テストでは、テーブル上の左右におかれたふた付の報酬ケースのうち、ランドマークとなる物体により近い方を選択すると報酬が得られる。下側頭葉 TE 野を損傷されたサルは、物体認識テストにおいて著しい障害を示したが、空間認識テストでは障害を示さなかった。一方、下頭頂酔葉PG野を損傷されたサルは、空間認識テストで障害を示したが、物体認識テストでは障害を示さなかった。このような結果から、Mishkinらは、同一の物体の情報処理が、処理内容によって異なる経路を介することを主張した<ref><pubmed>7126325</pubmed></ref> 。すなわち、視覚的に提示された物体について、空間的情報は一次視覚野から背側に流れる経路「where patyway」で処理され、物体認知は一次視覚野から腹側に流れる経路「what pathway」で処理されるとした。


 また側頭葉内側部と物体記憶の関連について、見本試行と選択試行の間に遅延時間を設定する[[遅延非見本合わせ課題]](delayed nonmatching to sample)によって検討されてきた。この課題を用いた初期の実験<ref><pubmed>418358</pubmed></ref>では、[[wikipedia:ja:マカクザル|マカクザル]]の海馬と[[扁桃体]]を含む側頭葉内側部の損傷の効果が検討された。見本試行と選択試行の遅延時間が10秒以内である場合、この課題の遂行に損傷の影響はなかったが、それよりも長い遅延時間が挿入されると、その時間依存的に課題の正答率が低くなった。後に同研究者によって損傷の精度を高めて追試が行われた結果、この障害は海馬や扁桃体単独の損傷では生じず、むしろそれらの近辺領域にある嗅皮質の損傷が障害を引き起こしたことが明らかになった<ref><pubmed>9698344</pubmed></ref>。したがって、物体認知記憶には海馬や扁桃体ではなく嗅皮質が関与すると考えられる。
 また側頭葉内側部と物体記憶の関連について、見本試行と選択試行の間に遅延時間を設定する[[遅延非見本合わせ課題]](delayed nonmatching to sample)によって検討されてきた。この課題を用いた初期の実験<ref><pubmed>418358</pubmed></ref>では、[[wikipedia:ja:マカクザル|マカクザル]]の海馬と[[扁桃体]]を含む側頭葉内側部の損傷の効果が検討された。見本試行と選択試行の遅延時間が10秒以内である場合、この課題の遂行に損傷の影響はなかったが、それよりも長い遅延時間が挿入されると、その時間依存的に課題の正答率が低くなった。後に同研究者によって損傷の精度を高めて追試が行われた結果、この障害は海馬や扁桃体単独の損傷では生じず、むしろそれらの近辺領域にある嗅皮質の損傷が障害を引き起こしたことが明らかになった<ref><pubmed>9698344</pubmed></ref>。したがって、物体認知記憶には海馬や扁桃体ではなく[[嗅皮質]]が関与すると考えられる。


== 関連項目  ==
== 関連項目  ==
214

回編集

案内メニュー