「リーリン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
9行目: 9行目:


{{box|text=
{{box|text=
 リーリンは全長約3500アミノ酸残基からなる巨大分泌[[wikipedia:ja:|タンパク質]]であり、歩行時によろめく表現型を持つ自然発症[[マウス]]「[[リーラー]]」において欠損する分子として同定された。
 リーリンは全長約3500アミノ酸残基からなる巨大分泌[[wikipedia:ja:タンパク質|タンパク質]]であり、歩行時によろめく表現型を持つ自然発症[[マウス]]「[[リーラー]]」において欠損する分子として同定された。


 リーリンは、[[リポタンパク質受容体]]として知られる[[ApoER2]]や[[VLDLR]]に結合し、細胞内タンパク質[[Dab1]]の[[リン酸化]]を誘導する。この[[シグナル経路]]の活性化により、胎生期では[[神経細胞]]の[[移動]]や形態形成が、成体期では[[記憶]]の形成や[[シナプス可塑性]]が制御される。
 リーリンは、[[リポタンパク質受容体]]として知られる[[ApoER2]]や[[VLDLR]]に結合し、細胞内タンパク質[[Dab1]]の[[リン酸化]]を誘導する。この[[シグナル経路]]の活性化により、胎生期では[[神経細胞]]の[[移動]]や形態形成が、成体期では[[記憶]]の形成や[[シナプス可塑性]]が制御される。
22行目: 22行目:
 1995年に、Tom curranのグループは、[[c-fos]]遺伝子の[[トランスジェニックマウス]]を作製中に、偶然リーラー遺伝子にトランスジーンが挿入されたマウスを得た。このマウスを利用することにより全長cDNAを報告し、リーラーの原因遺伝子をリーリン(Reelin)と名付けた<ref><pubmed> 7715726 </pubmed></ref>。また同じ頃、林崎、Goffinetらのグループもポジショナルクローニング法により、部分配列を同定した。
 1995年に、Tom curranのグループは、[[c-fos]]遺伝子の[[トランスジェニックマウス]]を作製中に、偶然リーラー遺伝子にトランスジーンが挿入されたマウスを得た。このマウスを利用することにより全長cDNAを報告し、リーラーの原因遺伝子をリーリン(Reelin)と名付けた<ref><pubmed> 7715726 </pubmed></ref>。また同じ頃、林崎、Goffinetらのグループもポジショナルクローニング法により、部分配列を同定した。


 [[wikipedia:ja:|御子柴]]らのグループは、野生型マウスの脳抽出物を、リーラーマウスに免疫することでリーラーマウスにおいて欠失したタンパク質に対する[[wikipedia:ja:|モノクローナル抗体]]の樹立を試み、CR-50抗体を樹立した。CR-50抗体は野生型マウス大脳皮質のカハール・レチウス細胞を標識することを見いだし、リーラーマウスで欠失するタンパク質が、[[カハール・レチウス細胞]]に発現する事が明らかになった<ref><pubmed> 7748558 </pubmed></ref>。後に、CR-50の抗原がリーリンタンパク質のN末端側を認識することが確認された。
 [[wikipedia:ja:御子柴克彦|御子柴]]らのグループは、野生型マウスの脳抽出物を、リーラーマウスに免疫することでリーラーマウスにおいて欠失したタンパク質に対する[[wikipedia:ja:モノクローナル抗体|モノクローナル抗体]]の樹立を試み、CR-50抗体を樹立した。CR-50抗体は野生型マウス大脳皮質のカハール・レチウス細胞を標識することを見いだし、リーラーマウスで欠失するタンパク質が、[[カハール・レチウス細胞]]に発現する事が明らかになった<ref><pubmed> 7748558 </pubmed></ref>。後に、CR-50の抗原がリーリンタンパク質のN末端側を認識することが確認された。


== リーリンの構造 ==
== リーリンの構造 ==
40行目: 40行目:




== リーリン受容体とその下流シグナル ==
== 受容体とその下流シグナル ==
[[ファイル:Takao Kohno Fig 2.jpg|thumb|right|250px|'''図2.リーリン受容体とその下流シグナル''']]
[[ファイル:Takao Kohno Fig 2.jpg|thumb|right|250px|'''図2.リーリン受容体とその下流シグナル''']]


 リーリンは、リポタンパク質受容体であるApoER2およびVLDLRに直接結合する<ref name=ref12><pubmed> 10571241 </pubmed></ref><ref><pubmed> 10571240 </pubmed></ref>。リーリンがこれら受容体に結合すると、FynなどのSrc family kinaseが活性化し<ref><pubmed> 12526739 </pubmed></ref><ref><pubmed> 12526740 </pubmed></ref>、細胞内タンパク質Dab1の[[チロシンリン酸化]]が誘導される<ref><pubmed> 10090720 </pubmed></ref>。ApoER2とVLDLRを共に欠くマウス<ref><pubmed> 10380922 </pubmed></ref>、Dab1欠損マウス<ref><pubmed> 9338784 </pubmed></ref><ref><pubmed> 9338785 </pubmed></ref>、Dab1のチロシン残基に変異を導入したマウス<ref><pubmed> 10959835 </pubmed></ref>、FynとSrcを共に欠くマウス<ref><pubmed> 16162939 </pubmed></ref>はいずれもリーラーマウスに酷似した脳形成異常を示す。従って、ApoER2/VLDLRを介したリーリンによるDab1のチロシンリン酸化が正常な脳形成に必要であると言える。 
 リーリンは、リポタンパク質受容体であるApoER2およびVLDLRに直接結合する<ref name=ref12><pubmed> 10571241 </pubmed></ref><ref><pubmed> 10571240 </pubmed></ref>。リーリンがこれら受容体に結合すると、[[Fyn]]などの[[Src family kinase]]が活性化し<ref><pubmed> 12526739 </pubmed></ref><ref><pubmed> 12526740 </pubmed></ref>、細胞内タンパク質Dab1の[[チロシンリン酸化]]が誘導される<ref><pubmed> 10090720 </pubmed></ref>。ApoER2とVLDLRを共に欠くマウス<ref><pubmed> 10380922 </pubmed></ref>、Dab1欠損マウス<ref><pubmed> 9338784 </pubmed></ref><ref><pubmed> 9338785 </pubmed></ref>、Dab1のチロシン残基に変異を導入したマウス<ref><pubmed> 10959835 </pubmed></ref>、FynとSrcを共に欠くマウス<ref><pubmed> 16162939 </pubmed></ref>はいずれもリーラーマウスに酷似した脳形成異常を示す。従って、ApoER2/VLDLRを介したリーリンによるDab1のチロシンリン酸化が正常な脳形成に必要であると言える。
 
 
 リーリンの刺激により、Dab1はY185、Y198、Y220、Y232の4カ所でリン酸化を受ける<ref><pubmed> 10959835 </pubmed></ref>。
 リーリンの刺激により、Dab1はY185、Y198、Y220、Y232の4カ所でリン酸化を受ける<ref><pubmed> 10959835 </pubmed></ref>。
Y185とY198でリン酸化を受けたDab1はPI3Kのp85aサブユニットに結合し<ref><pubmed> 12882964 </pubmed></ref>、Aktのリン酸化及び[[GSK3β]]のリン酸化を誘導する。これによりTauのリン酸化が制御されると考えられている。
Y185とY198でリン酸化を受けたDab1は[[PI3K]]の[[p85aサブユニット]]に結合し<ref><pubmed> 12882964 </pubmed></ref>、[[Akt]]のリン酸化及び[[GSK3β]]のリン酸化を誘導する。これにより[[Tau]]のリン酸化が制御されると考えられている。


 Dab1のY220及びY232のリン酸化は、Crk/Crkl-C3G複合体をリクルートし、[[低分子量Gタンパク質]]であるRap1のリン酸化を促す<ref><pubmed> 15062102 </pubmed></ref>。最近、大脳[[皮質形成]]の最終段階における、リーリン-Crk/CrkL-C3G-Rap1経路の重要性が明らかとなり、神経細胞が原皮質帯と呼ばれる領域へ進入する際に、この経路を介したインテグリンα5β1の活性化が必要であることが明らかになった<ref><pubmed> 23083738 </pubmed></ref>。また、Dab1を介したRap1の活性化は、[[カドヘリン]]の機能を調節し、早生まれの神経細胞の細胞体トランスロケーションや、遅生まれの神経細胞の多極性移動に重要な役割を担うことも明らかになった<ref><pubmed> 21315259 </pubmed></ref><ref><pubmed> 21516100 </pubmed></ref>。また、PI3Kの下流で、n-cofilinのリン酸化が誘導され、これによりアクチン骨格系が安定化されることも報告されている<ref><pubmed> 19129405 </pubmed></ref>。
 Dab1のY220及びY232のリン酸化は、[[Crk]]/[[Crkl]]-[[C3G]]複合体をリクルートし、[[低分子量Gタンパク質]]である[[Rap1]]のリン酸化を促す<ref><pubmed> 15062102 </pubmed></ref>。


 Dab1の下流分子としては他にも数多くの候補分子が挙げられているが、どの分子がどの現象でどの程度重要なのかについて、決定的な証拠がある例は少ない。おそらくは、細胞種や時期によって、複数の因子が関与しているものと推察される。   
 最近、大脳皮質形成の最終段階における、リーリン-Crk/CrkL-C3G-Rap1経路の重要性が明らかとなり、神経細胞が[[原皮質帯]]と呼ばれる領域へ進入する際に、この経路を介した[[インテグリンα5β1]]の活性化が必要であることが明らかになった<ref><pubmed> 23083738 </pubmed></ref>。


 また、Dab1を介したRap1の活性化は、[[カドヘリン]]の機能を調節し、早生まれの神経細胞の細胞体トランスロケーションや、遅生まれの神経細胞の多極性移動に重要な役割を担うことも明らかになった<ref><pubmed> 21315259 </pubmed></ref><ref><pubmed> 21516100 </pubmed></ref>。また、PI3Kの下流で、[[n-cofilin]]のリン酸化が誘導され、これにより[[アクチン]]骨格系が安定化されることも報告されている<ref><pubmed> 19129405 </pubmed></ref>。


 Dab1の下流分子としては他にも数多くの候補分子が挙げられているが、どの分子がどの現象でどの程度重要なのかについて、決定的な証拠がある例は少ない。おそらくは、細胞種や時期によって、複数の因子が関与しているものと推察される。   


== 大脳皮質形成におけるリーリンの機能 ==
== 大脳皮質形成におけるリーリンの機能 ==
 発生初期の大脳皮質は、プレプレートと呼ばれる層と、神経細胞が新たに生まれる[[脳室]]帯からなる。脳室帯で生まれた神経細胞はプレプレートに侵入し、プレプレートは、[[辺縁帯]]とサブプレートに分離する(この現象はプレプレートスプリッティングと呼ばれる)。これに続いて、脳室帯で生まれた神経細胞は、サブプレートを越え放射状に移動し(この時、遅生まれの神経細胞は、早生まれの神経細胞を追い越すように移動する)、辺縁帯の直前で移動を停止する。このようにして、大脳皮質は、早生まれの神経細胞が脳室側に、遅生まれの神経細胞が表層側に配置される。
 発生初期の大脳皮質は、[[プレプレート]]と呼ばれる層と、神経細胞が新たに生まれる[[脳室帯]]からなる。脳室帯で生まれた神経細胞はプレプレートに侵入し、プレプレートは、[[辺縁帯]]とサブプレートに分離する(この現象は[[プレプレートスプリッティング]]と呼ばれる)。これに続いて、脳室帯で生まれた神経細胞は、サブプレートを越え放射状に移動し(この時、遅生まれの神経細胞は、早生まれの神経細胞を追い越すように移動する)、辺縁帯の直前で移動を停止する。このようにして、大脳皮質は、早生まれの神経細胞が[[脳室]]側に、遅生まれの神経細胞が表層側に配置される。


 リーリンを欠損するリーラーマウスでは、まずプレプレートスプリッティングが起きない。また、脳室帯で生まれた神経細胞は、早生まれの神経細胞を追い越すことができず、野生型の場合と比べて神経細胞の位置が概ね逆転する。このことから、まずリーリンはプレプレートスプリッティングを起こすために必要であると考えられる。またリーラーマウスにおける[[神経細胞移動]]の異常が、プレプレートスプリッティング異常による、二次的なものかであるか否かは明確な証拠は未だない。
 リーリンを欠損するリーラーマウスでは、まずプレプレートスプリッティングが起きない。また、脳室帯で生まれた神経細胞は、早生まれの神経細胞を追い越すことができず、野生型の場合と比べて神経細胞の位置が概ね逆転する。このことから、まずリーリンはプレプレートスプリッティングを起こすために必要であると考えられる。またリーラーマウスにおける神経細胞移動の異常が、プレプレートスプリッティング異常による、二次的なものかであるか否かは明確な証拠は未だない。


 大脳皮質神経細胞移動におけるリーリンの機能については、いくつかの説が提唱されている。
 大脳皮質神経細胞移動におけるリーリンの機能については、いくつかの説が提唱されている。


=== 停止シグナル説 ===
=== 停止シグナル説 ===
 Antonらのグループは、α3β1インテグリンがリーリンの受容体であることを報告し、リーリンとインテグリンとの結合により、神経細胞はラジアルファイバーから離脱し、移動を停止するモデルを提唱した<ref><pubmed> 10939329 </pubmed></ref>。また、Dab1のリン酸化がα3インテグリンの発現量を制御し、これにより神経細胞とラジアルファイバーとの接着性が調節されることが報告された<ref><pubmed> 15091337 </pubmed></ref>。しかし、移動中の神経細胞においてβ1インテグリンを欠失した条件付きノックアウトマウスでは、リーラーの様な層構造形成異常は見られなかった<ref><pubmed> 18077697 </pubmed></ref>ため、インテグリンを介した神経細胞停止機構については更なる研究が必要である。
 Antonらのグループは、[[インテグリンα3β1]]がリーリンの受容体であることを報告し、リーリンとインテグリンとの結合により、神経細胞は[[ラジアルファイバー]]から離脱し、移動を停止するモデルを提唱した<ref><pubmed> 10939329 </pubmed></ref>。また、Dab1のリン酸化がα3インテグリンの発現量を制御し、これにより神経細胞とラジアルファイバーとの接着性が調節されることが報告された<ref><pubmed> 15091337 </pubmed></ref>。しかし、移動中の神経細胞において[[β1インテグリン]]を欠失した条件付き[[ノックアウトマウス]]では、リーラーの様な層構造形成異常は見られなかった<ref><pubmed> 18077697 </pubmed></ref>ため、インテグリンを介した神経細胞停止機構については更なる研究が必要である。


 VLDLRノックアウトマウスの大脳皮質では、CuxII陽性細胞が辺縁層に侵入する<ref><pubmed> 17913789 </pubmed></ref>ため、辺縁層の直下で神経細胞が停止する機構に、VLDLRが必要であると考えられる。
 VLDLRノックアウトマウスの大脳皮質では、[[CuxII]]陽性細胞が辺縁層に侵入する<ref><pubmed> 17913789 </pubmed></ref>ため、辺縁層の直下で神経細胞が停止する機構に、VLDLRが必要であると考えられる。


=== 許容シグナル説 ===
=== 許容シグナル説 ===
 停止シグナル説に対して、2002年頃からリーリンは神経細胞移動に対してpermissiveに働くという許容シグナル説が提唱された。Curranらは、表層側からのリーリン分泌が大脳皮質形成に必要であるかを検討するために、Nestinプロモーター下でリーリンを発現するトランスジェニックマウス(このマウスでは、脳室側でリーリンが異所的に発現する)を作製した<ref><pubmed> 11856531 </pubmed></ref>。このマウスでは神経細胞の移動が阻害されず、大脳皮質の層構造は正常であった。さらに、リーラーマウスと交配した場合、異所的に発現したリーリンは、リーラーマウスのプレプレートスプリッティング異常を回復した(大脳皮質の層構造異常を完全に回復することができなかった)。これらの結果から、リーリンは単純な停止シグナルとして働くのではなく許容シグナルとして働くことが提唱された。
 停止シグナル説に対して、2002年頃からリーリンは神経細胞移動に対してpermissiveに働くという許容シグナル説が提唱された。Curranらは、表層側からのリーリン分泌が大脳皮質形成に必要であるかを検討するために、[[Nestin]][[プロモーター]]下でリーリンを発現するトランスジェニックマウス(このマウスでは、脳室側でリーリンが異所的に発現する)を作製した<ref><pubmed> 11856531 </pubmed></ref>。このマウスでは神経細胞の移動が阻害されず、大脳皮質の層構造は正常であった。さらに、リーラーマウスと交配した場合、異所的に発現したリーリンは、リーラーマウスのプレプレートスプリッティング異常を回復した(大脳皮質の層構造異常を完全に回復することができなかった)。これらの結果から、リーリンは単純な停止シグナルとして働くのではなく許容シグナルとして働くことが提唱された。


 また、cortical hemと呼ばれる部位由来のカハール・レチウス細胞を遺伝学的手法により除去したマウス<ref><pubmed> 16410414 </pubmed></ref>や、p73ノックアウト(辺縁層におけるカハール・レチウス細胞が激減する)マウス<ref><pubmed> 15525772 </pubmed></ref>では、プレプレートスプリッティングは起こり、層構造は概ね正常に形成された。さらに、リーラーの大脳皮質[[スライス培養]]系に、全長リーリンや、リーリン中央部分断片を添加すると、リーラーのプレプレートスプリッティング異常を回復することができるという報告もある<ref><pubmed> 14724251 </pubmed></ref>。
 また、[[cortical hem]]と呼ばれる部位由来のカハール・レチウス細胞を遺伝学的手法により除去したマウス<ref><pubmed> 16410414 </pubmed></ref>や、[[p73]]ノックアウト(辺縁層におけるカハール・レチウス細胞が激減する)マウス<ref><pubmed> 15525772 </pubmed></ref>では、プレプレートスプリッティングは起こり、層構造は概ね正常に形成された。さらに、リーラーの大脳皮質[[スライス培養]]系に、全長リーリンや、リーリン中央部分断片を添加すると、リーラーのプレプレートスプリッティング異常を回復することができるという報告もある<ref><pubmed> 14724251 </pubmed></ref>。


 これらの知見は、大脳皮質形成におけるリーリンの機能(少なくとも、プレプレートスプリッティングなどの一部の機能)には、リーリンが必ずしも表層側から分泌される必要がないことを示唆する。
 これらの知見は、大脳皮質形成におけるリーリンの機能(少なくとも、プレプレートスプリッティングなどの一部の機能)には、リーリンが必ずしも表層側から分泌される必要がないことを示唆する。
75行目: 77行目:
== 精神神経疾患におけるリーリン ==
== 精神神経疾患におけるリーリン ==
=== 滑脳症 ===
=== 滑脳症 ===
 ヒトでのリーリンの欠損は、てんかん、認知障害や精神遅滞を呈する滑脳症を引き起こす<ref><pubmed> 10973257 </pubmed></ref>。リーリン欠損による滑脳症は、小脳がほとんど形成されないことが特徴である。
 ヒトでのリーリンの欠損は、てんかん、[[認知障害]]や精神遅滞を呈する滑脳症を引き起こす<ref><pubmed> 10973257 </pubmed></ref>。リーリン欠損による滑脳症は、小脳がほとんど形成されないことが特徴である。


=== アルツハイマー病 ===
=== アルツハイマー病 ===
 リーリンとアルツハイマー病との関連は多数報告されており、アルツハイマー病患者の死後脳のアミロイドプラークにリーリンが検出されること<ref><pubmed> 11744223 </pubmed></ref>、アルツハイマー病患者の[[脳脊髄液]]におけるリーリンのN末端断片の増加<ref><pubmed> 12645087 </pubmed></ref>、リーリンの糖鎖修飾が健常者とは異なること<ref><pubmed> 16567613 </pubmed></ref>などがある。
 リーリンとアルツハイマー病との関連は多数報告されており、アルツハイマー病患者の死後脳のアミロイドプラークにリーリンが検出されること<ref><pubmed> 11744223 </pubmed></ref>、アルツハイマー病患者の[[脳脊髄液]]におけるリーリンのN末端断片の増加<ref><pubmed> 12645087 </pubmed></ref>、リーリンの[[wikipedia:ja:糖鎖|糖鎖]]修飾が健常者とは異なること<ref><pubmed> 16567613 </pubmed></ref>などがある。


 近年、アルツハイマー病とリーリンとの関連を調べるために、in vitroの研究およびマウスを用いた研究が数多くなされてきた。例えば、リーリンによるDab1のリン酸化は、APPタンパク質の膜上での発現量とその分解を増大し、Aβの産生を減少させる<ref><pubmed> 16951405 </pubmed></ref><ref><pubmed> 18089558 </pubmed></ref>。また、リーリンのヘテロ欠損マウスでは、野生型マウスに比べ、早期にAβ沈着が検出される<ref><pubmed> 20610758 </pubmed></ref>。さらに、リーリンシグナルの低下がタウタンパク質の過剰なリン酸化を引き起こし、これがアルツハイマー病の増悪化を引き起こすという説もある<ref name=ref12 />。これらの論文は、リーリンの量または機能の低下が、アルツハイマー病の増悪化の一因であることを示唆している。
 近年、アルツハイマー病とリーリンとの関連を調べるために、in vitroの研究およびマウスを用いた研究が数多くなされてきた。例えば、リーリンによるDab1のリン酸化は、APPタンパク質の膜上での発現量とその分解を増大し、[[Aβ]]の産生を減少させる<ref><pubmed> 16951405 </pubmed></ref><ref><pubmed> 18089558 </pubmed></ref>。また、リーリンのヘテロ欠損マウスでは、野生型マウスに比べ、早期にAβ沈着が検出される<ref><pubmed> 20610758 </pubmed></ref>。さらに、リーリンシグナルの低下がタウタンパク質の過剰なリン酸化を引き起こし、これがアルツハイマー病の増悪化を引き起こすという説もある<ref name=ref12 />。これらの論文は、リーリンの量または機能の低下が、アルツハイマー病の増悪化の一因であることを示唆している。


=== 統合失調症 ===
=== 統合失調症 ===
 ヒトにおける統合失調症の発症とリーリンのSNPを調べた研究は多く、そしてそのほとんどで弱いながらも相関が検出されている<ref><pubmed> 21863557 </pubmed></ref><ref><pubmed> 18282107 </pubmed></ref>。また、リーリンヘテロ欠損マウスでは[[プレパルスインヒビション]]が異常であるという報告<ref><pubmed> 18547243 </pubmed></ref>もある。リーリンは発生から生後機能まで様々な場面で重要な働きをすると考えられるので、その機能低下が統合失調症につながることは想像しやすいことではある。しかし、今まで行われたヒト遺伝学的解析は小規模なものが多く、またマウスを用いた研究や分子レベルの研究も散発的であり再現性などが充分担保されていないので、リーリンが統合失調症発症に関与するか否かは明確とは言えない。
 ヒトにおける統合失調症の発症とリーリンの[[SNP]]を調べた研究は多く、そしてそのほとんどで弱いながらも相関が検出されている<ref><pubmed> 21863557 </pubmed></ref><ref><pubmed> 18282107 </pubmed></ref>。また、リーリンヘテロ欠損マウスでは[[プレパルスインヒビション]]が異常であるという報告<ref><pubmed> 18547243 </pubmed></ref>もある。リーリンは発生から生後機能まで様々な場面で重要な働きをすると考えられるので、その機能低下が統合失調症につながることは想像しやすいことではある。しかし、今まで行われたヒト遺伝学的解析は小規模なものが多く、またマウスを用いた研究や分子レベルの研究も散発的であり再現性などが充分担保されていないので、リーリンが統合失調症発症に関与するか否かは明確とは言えない。


=== 自閉症 ===
=== 自閉症 ===
89行目: 91行目:


=== 気分障害 ===
=== 気分障害 ===
 [[双極性障害]]やうつ病においてもリーリンの関与は研究されており、患者死後脳の研究ではリーリンはこれらの患者ではわずかではあるが減少している<ref><pubmed> 11074872 </pubmed></ref><ref><pubmed> 11126396 </pubmed></ref>。また、リーリンにはCTRをコードするエキソンの直前で選択的スプライシングが生じ、CTRの無いアイソフォームが生じることが知られている。双極性障害の患者では、このタイプのmRNAの割合が減少していることが報告されている<ref><pubmed> 21603580 </pubmed></ref>。CTRを欠損するアイソフォームはシグナル活性が弱いので、双極性障害患者では相対的にリーリン機能は亢進していることになる。しかしこれは、リーリンの機能低下を補う代償機構の結果である可能性も残されている。
 [[双極性障害]]や[[うつ病]]においてもリーリンの関与は研究されており、患者死後脳の研究ではリーリンはこれらの患者ではわずかではあるが減少している<ref><pubmed> 11074872 </pubmed></ref><ref><pubmed> 11126396 </pubmed></ref>。また、リーリンにはCTRをコードする[[wikipedia:ja:エキソン|エキソン]]の直前で[[wikipedia:ja:選択的スプライシング|選択的スプライシング]]が生じ、CTRの無いアイソフォームが生じることが知られている。双極性障害の患者では、このタイプの[[wikipedia:ja:mRNA|mRNA]]の割合が減少していることが報告されている<ref><pubmed> 21603580 </pubmed></ref>。CTRを欠損するアイソフォームはシグナル活性が弱いので、双極性障害患者では相対的にリーリン機能は亢進していることになる。しかしこれは、リーリンの機能低下を補う代償機構の結果である可能性も残されている。


== 参考文献 ==
== 参考文献 ==
<references/>
<references/>

案内メニュー