「アミロイドβタンパク質」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
26行目: 26行目:
 一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]]発症に対して防御的な経路と考えられる。
 一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]]発症に対して防御的な経路と考えられる。


 APPのα、β切断によって細胞外領域が分泌されるが、このような現象は[[エクトドメインシェディング]]とも呼ばれ、様々な膜タンパク質において観察されている<ref><pubmed> 22991436 </pubmed></ref>。そしてシェディングによって生じる膜結合型の断片がさらに引き続いて膜内配列におけるγ切断をうけるI型膜貫通蛋白も多く知られており、APPファミリー分子の他にも[[Notch]]や[[Cadherin]]、[[CD44]]、[[Neuregulin]]、[[ErbB4]]、[[Alcadein]]、[[Neuroligin]]などがその切断を介して神経・グリア細胞の分化、[[神経可塑性]]や神経生存性に重要な役割を果たすことが示されている<ref><pubmed> 16630834 </pubmed></ref><ref><pubmed> 19038214 </pubmed></ref><ref><pubmed> 21865451 </pubmed></ref><ref><pubmed> 21982365 </pubmed></ref><ref><pubmed> 23083742 </pubmed></ref>。また一部の基質ではAβ様分泌ペプチドの産生が確認されている<ref><pubmed> 20049724 </pubmed></ref><ref><pubmed> 21681798 </pubmed></ref>。しかしその生理的機能は定かではなく、またAβ以外の分子が凝集能を示すことは報告されていない。また多くの場合、シェディングの役割は細胞表面膜に存在する基質の量を低下させることに寄与している。したがってAβが産生されるプロセスは比較的普遍的な膜タンパク質代謝の一つであり<ref><pubmed> 15173829 </pubmed></ref>、シェディングによって生じた膜結合型断片を分解する過程で生じた産物とも考えられる。
 APPのα、β切断によって細胞外領域が分泌されるが、このような現象は[[エクトドメインシェディング]]とも呼ばれ、様々な膜タンパク質において観察されている<ref><pubmed> 22991436 </pubmed></ref>。そしてシェディングによって生じる膜結合型の断片がさらに引き続いて膜内配列におけるγ切断をうけるI型膜貫通蛋白も多く知られており、APPファミリー分子の他にも[[Notch]]や[[カドヘリン]]、[[CD44]]、[[ニューレグリン]]、[[ErbB4]]、[[アルカデイン]]、[[ニューロリジン]]などがその切断を介して神経・グリア細胞の分化、[[神経可塑性]]や神経生存性に重要な役割を果たすことが示されている<ref><pubmed> 16630834 </pubmed></ref><ref><pubmed> 19038214 </pubmed></ref><ref><pubmed> 21865451 </pubmed></ref><ref><pubmed> 21982365 </pubmed></ref><ref><pubmed> 23083742 </pubmed></ref>。また一部の基質ではAβ様分泌ペプチドの産生が確認されている<ref><pubmed> 20049724 </pubmed></ref><ref><pubmed> 21681798 </pubmed></ref>。しかしその生理的機能は定かではなく、またAβ以外の分子が凝集能を示すことは報告されていない。また多くの場合、シェディングの役割は細胞表面膜に存在する基質の量を低下させることに寄与している。したがってAβが産生されるプロセスは比較的普遍的な膜タンパク質代謝の一つであり<ref><pubmed> 15173829 </pubmed></ref>、シェディングによって生じた膜結合型断片を分解する過程で生じた産物とも考えられる。


 一方、γセクレターゼ切断によって放出される細胞質内領域が何らかの役割を果たしていることが多い。特に膜受容体型転写因子であるNotchは、近接する細胞に発現しているリガンドの結合を契機として[[ADAM10]]によりシェディングを受け、引き続きγセクレターゼによって転写活性化ドメインを含む細胞質内領域を放出し、遺伝子発現を調節している<ref><pubmed> 23028119 </pubmed></ref><ref><pubmed> 24099003 </pubmed></ref>。
 一方、γセクレターゼ切断によって放出される細胞質内領域が何らかの役割を果たしていることが多い。特に膜受容体型転写因子であるNotchは、近接する細胞に発現しているリガンドの結合を契機として[[ADAM10]]によりシェディングを受け、引き続きγセクレターゼによって転写活性化ドメインを含む細胞質内領域を放出し、遺伝子発現を調節している<ref><pubmed> 23028119 </pubmed></ref><ref><pubmed> 24099003 </pubmed></ref>。


==Aβの凝集性と沈着様式==
==Aβの凝集性と沈着様式==
 Aβの特徴はその凝集性の高さであり、[[wikipedia:ja:|緩衝液]]中に高濃度で存在するだけで凝集してアミロイド線維を形成する。凝集したAβは分解抵抗性を示す。人工合成ペプチドを用いた解析から、その線維形成過程は主にAβの一次配列とアミノ酸長に依存することが示されている。特に産生時のγセクレターゼによる切断部位の多様性によって生じる最C末端長の違いが、生理的条件下で生じうるAβの凝集性を変化させる要因である。Aβの主な分子種として、第40番目のアミノ酸であるValで終わるAβ40、第42番目のアミノ酸であるAlaで終わるAβ42が知られている。通常、神経細胞からはAβ40がAβ42に比して10倍近く多く産生される<ref><pubmed> 7640283 </pubmed></ref>。
 Aβの特徴はその凝集性の高さであり、[[wikipedia:ja:緩衝液|緩衝液]]中に高濃度で存在するだけで凝集してアミロイド線維を形成する。凝集したAβは分解抵抗性を示す。人工合成ペプチドを用いた解析から、その線維形成過程は主にAβの一次配列とアミノ酸長に依存することが示されている。特に産生時のγセクレターゼによる切断部位の多様性によって生じる最C末端長の違いが、生理的条件下で生じうるAβの凝集性を変化させる要因である。Aβの主な分子種として、第40番目のアミノ酸であるValで終わるAβ40、第42番目のアミノ酸であるAlaで終わるAβ42が知られている。通常、神経細胞からはAβ40がAβ42に比して10倍近く多く産生される<ref><pubmed> 7640283 </pubmed></ref>。


 このうちAβ42は<i>in vitro</i>で凝集性が高く<ref><pubmed> 8490014 </pubmed></ref>、AD患者脳においても初期から優位に蓄積することが知られている<ref><pubmed> 8043280 </pubmed></ref>。最近、Aβ43が更に凝集性が高い分子種であり、AD脳でも蓄積していることが示され、AβのC末端長の重要性が再確認されている<ref><pubmed> 21725313 </pubmed></ref>。また産生後に生じる最N末端の部分分解とピログルタミル化<ref><pubmed> 7857653 </pubmed></ref>も非常に疎水性が上がるため重要であると考えられている。そのためアルツハイマー病患者脳に老人斑として蓄積している最も主要なAβは、3番目の[[グルタミン酸]]がピログルタミル化し、最C末端が42番目のアラニンで終わっている分子種であると想定されている。
 このうちAβ42は<i>in vitro</i>で凝集性が高く<ref><pubmed> 8490014 </pubmed></ref>、AD患者脳においても初期から優位に蓄積することが知られている<ref><pubmed> 8043280 </pubmed></ref>。最近、Aβ43が更に凝集性が高い分子種であり、AD脳でも蓄積していることが示され、AβのC末端長の重要性が再確認されている<ref><pubmed> 21725313 </pubmed></ref>。また産生後に生じる最N末端の部分分解とピログルタミル化<ref><pubmed> 7857653 </pubmed></ref>も非常に疎水性が上がるため重要であると考えられている。そのためアルツハイマー病患者脳に老人斑として蓄積している最も主要なAβは、3番目の[[グルタミン酸]]がピログルタミル化し、最C末端が42番目のアラニンで終わっている分子種であると想定されている。
62行目: 62行目:


==Aβの分解==
==Aβの分解==
 生理的条件下ではAβは[[ネプリライシン]]などの酵素により分解されるため、脳内でのAβの半減期は30分程度である<ref><pubmed> 19741145 </pubmed></ref>。その他にも[[インスリン分解酵素]]や、プラスミン、エンドセリン変換酵素、カテプシン、KLK7、MMPなどがAβ分解酵素として同定されている。Aβはグリア細胞による貪食を受けることも知られている。さらに血管内皮細胞を介したトランスエンドサイトーシスによって排出される可能性も示唆されている。アルツハイマー病の遺伝学的リスク因子として最も強い[[wikipedia:en: Apolipoprotein_E|Apolipoprotein E]]はAβ分解システムに関与している<ref><pubmed> 18549781 </pubmed></ref><ref><pubmed> 21715678 </pubmed></ref>ことが示唆されている他、孤発性アルツハイマー病患者においてはAβクリアランス速度が有意に低下している<ref><pubmed> 21148344 </pubmed></ref>ことが示されており、Aβ分解・代謝経路の全容解明が待たれている。
 生理的条件下ではAβは[[ネプリライシン]]などの酵素により分解されるため、脳内でのAβの[[wikipedia:ja:半減期|半減期]]は30分程度である<ref><pubmed> 19741145 </pubmed></ref>。その他にも[[インスリン分解酵素]]や、[[プラスミン]]、[[エンドセリン変換酵素]]、[[カテプシン]]、[[KLK7]]、[[MMP]]などがAβ分解酵素として同定されている。Aβはグリア細胞による貪食を受けることも知られている。さらに血管内皮細胞を介した[[wikipedia:ja:トランスエンドサイトーシス|トランスエンドサイトーシス]]によって排出される可能性も示唆されている。アルツハイマー病の遺伝学的リスク因子として最も強い[[wikipedia:en: Apolipoprotein_E|Apolipoprotein E]]はAβ分解システムに関与している<ref><pubmed> 18549781 </pubmed></ref><ref><pubmed> 21715678 </pubmed></ref>ことが示唆されている他、孤発性アルツハイマー病患者においてはAβクリアランス速度が有意に低下している<ref><pubmed> 21148344 </pubmed></ref>ことが示されており、Aβ分解・代謝経路の全容解明が待たれている。


==脳内Aβ濃度を保つシステムと機能==
==脳内Aβ濃度を保つシステムと機能==
 脳内におけるAβ産生はBACE1発現量が最も高い神経細胞が主に担い<ref><pubmed> 10549806 </pubmed></ref>、その産生量は神経活動に依存している<ref><pubmed> 12670422 </pubmed></ref>。そのメカニズムとしてBACE1<ref><pubmed> 21715678 </pubmed></ref>やγセクレターゼ<ref><pubmed> 23563578 </pubmed></ref>、そしてαセクレターゼであるADAM10<ref><pubmed> 23676497 </pubmed></ref>の活性が神経活動に応じて変化することが示されている。
 脳内におけるAβ産生はBACE1発現量が最も高い神経細胞が主に担い<ref><pubmed> 10549806 </pubmed></ref>、その産生量は神経活動に依存している<ref><pubmed> 12670422 </pubmed></ref>。そのメカニズムとしてBACE1<ref><pubmed> 21715678 </pubmed></ref>やγセクレターゼ<ref><pubmed> 23563578 </pubmed></ref>、そしてαセクレターゼであるADAM10<ref><pubmed> 23676497 </pubmed></ref>の活性が神経活動に応じて変化することが示されている。


 このような神経活動に依存したAβ産生亢進は、昏睡患者における意識レベルと脳脊髄液中Aβ量の相関<ref><pubmed> 18755980 </pubmed></ref>や、睡眠・覚醒と関連した脳内Aβ量の日周期変動<ref><pubmed> 19779148</pubmed></ref>、さらに老人斑沈着を認める非認知症者における異常な脳活動の上昇<ref><pubmed> 19640477 </pubmed></ref>とも関連が示唆されている。その一方で高濃度のAβは神経細胞を異常興奮させること、一方で神経活動を低下させたり、神経細胞死を招くことが実験系で示されている。このような観点から、神経活動依存性に産生されるAβがフィードバック的に脳内における神経活動の制御に関わっているという可能性も提示されている。しかしAPPノックアウトマウスにおける神経可塑性異常については報告されておらず、Aβの生理的意義については不明である。
 このような神経活動に依存したAβ産生亢進は、昏睡患者における意識レベルと脳脊髄液中Aβ量の相関<ref><pubmed> 18755980 </pubmed></ref>や、睡眠・覚醒と関連した脳内Aβ量の日周期変動<ref><pubmed> 19779148</pubmed></ref>、さらに老人斑沈着を認める非認知症者における異常な脳活動の上昇<ref><pubmed> 19640477 </pubmed></ref>とも関連が示唆されている。その一方で高濃度のAβは神経細胞を異常興奮させること、一方で神経活動を低下させたり、[[神経細胞死]]を招くことが実験系で示されている。このような観点から、神経活動依存性に産生されるAβがフィードバック的に脳内における神経活動の制御に関わっているという可能性も提示されている。しかしAPP[[ノックアウトマウス]]における[[神経可塑性]]異常については報告されておらず、Aβの生理的意義については不明である。


 なおAPPの生理機能については、シナプス小胞の輸送や神経突起の伸長に関与していることが示唆されているが<ref><pubmed> 22355794 </pubmed></ref>、哺乳類においてはファミリー分子であるAPLP1、APLP2が相補的に機能している。そのためAPPノックアウトマウスで大きな異常は認められていないが、APP/APLP2ダブルノックアウトマウスでは脳の発生異常が報告されている。しかしAPLPファミリーとAPPではAβ部分の一次配列が全く異なっており、少なくともAβはAPP機能には必要ないと考えられる。
 なおAPPの生理機能については、[[シナプス小胞]]の[[輸送]]や神経突起の伸長に関与していることが示唆されているが<ref><pubmed> 22355794 </pubmed></ref>、[[哺乳類]]においてはファミリー分子である[[APLP1]]、[[APLP2]]が相補的に機能している。そのためAPPノックアウトマウスで大きな異常は認められていないが、APP/APLP2ダブルノックアウトマウスでは脳の発生異常が報告されている。しかしAPLPファミリーとAPPではAβ部分の一次配列が全く異なっており、少なくともAβはAPP機能には必要ないと考えられる。


==Aβを標的とした抗アルツハイマー病治療薬開発戦略==
==Aβを標的とした抗アルツハイマー病治療薬開発戦略==
 アミロイドカスケード仮説に基づき、Aβを標的とした抗アルツハイマー病戦略は根治療法として期待され、特にセクレターゼ活性制御によるAβ産生メカニズムの抑制、Aβ凝集阻害によるアミロイド形成抑制、そしてAβ除去を促進するアミロイド沈着の抑制を主たる薬効とする治療薬開発が推進されてきた。この中でセクレターゼ活性制御のうちγセクレターゼ阻害薬[[wikipedia:en:Semagacestrat|Semagacestat]]の治験は副作用を生じたため開発が中止された。現在ではAβ42産生のみを特異的に低下させるγセクレターゼ制御薬(モジュレーター)や、βセクレターゼ阻害薬の治験が精力的に進められている<ref><pubmed> 19402777 </pubmed></ref>。Aβ凝集阻害については[[wikipedia:en:scyllo-Inositol|scyllo-Inositol]]を用いた治験が行われたが、やはり副作用のため開発中止となった。Aβ除去を目的としたストラテジーについては、現在は特にAβに対する獲得免疫を利用した抗体やワクチンによる治療薬開発が進められている。またAβの凝集性を高めるピログルタミル化を担う酵素Glutaminyl Cyclaseも、新たな創薬戦略として注目されている<ref><pubmed> 18836460 </pubmed></ref>。
[[Image:TTfig7.PNG|thumb|350px|'''図4.アルツハイマー病の進行と分子病態'''<br>Aβ蓄積は15-20年以上前から開始していると推測されている。]]


 剖検脳[[Image:TTfig7.PNG|thumb|350px|'''図4.アルツハイマー病の進行と分子病態'''<br>Aβ蓄積は15-20年以上前から開始していると推測されている。]]において老人斑の疾患特異性が高いのに対して、神経原線維変化は様々な神経変性疾患において観察されること、そして非認知症健常者においても老人斑蓄積が認められることから、Aβ蓄積とタウ病変である神経原線維変化の関係については、長らく様々な議論がなされてきた。しかしほぼ全てのFAD遺伝子変異がAβ蓄積を亢進する一方で、Aβ産生を抑制する変異が認知機能低下に対する防御的変異として同定されたこと、またタウ遺伝子変異に起因し、老人斑蓄積を認めない[[wikipedia:ja:前頭側頭葉変性症|前頭側頭葉変性症]]が見出され、Aβは[[アルツハイマー病]]を惹起する毒性分子であり、タウ病変はその下流で神経細胞死に直接関与するプロセスであると考えられるようになった。そしてモデルマウスを用いて、Aβ蓄積がタウ病変を亢進させる<ref><pubmed> 11520987 </pubmed></ref><ref><pubmed> 11520988 </pubmed></ref>ことや、脳脊髄液中のタウ濃度を上昇させる<ref><pubmed> 23863834 </pubmed></ref>ことが示された。
 アミロイドカスケード仮説に基づき、Aβを標的とした抗アルツハイマー病戦略は根治療法として期待され、特にセクレターゼ活性制御によるAβ産生メカニズムの抑制、Aβ凝集阻害によるアミロイド形成抑制、そしてAβ除去を促進するアミロイド沈着の抑制を主たる薬効とする治療薬開発が推進されてきた。この中でセクレターゼ活性制御のうちγセクレターゼ阻害薬[[wikipedia:en:Semagacestrat|Semagacestat]]の治験は副作用を生じたため開発が中止された。現在ではAβ42産生のみを特異的に低下させるγセクレターゼ制御薬(モジュレーター)や、βセクレターゼ阻害薬の治験が精力的に進められている<ref><pubmed> 19402777 </pubmed></ref>。Aβ凝集阻害については[[scyllo-Inositol]]を用いた治験が行われたが、やはり副作用のため開発中止となった。Aβ除去を目的としたストラテジーについては、現在は特にAβに対する獲得免疫を利用した[[wikipedia:ja:抗体|抗体]][[wikipedia:ja:ワクチン|ワクチン]]による治療薬開発が進められている。またAβの凝集性を高めるピログルタミル化を担う酵素[[glutaminyl cyclase]]も、新たな創薬戦略として注目されている<ref><pubmed> 18836460 </pubmed></ref>


 一方でこれまでに多くのAβに対する治療法開発が失敗に終わってきた。特にAβワクチン療法AN-1792の治験では、老人斑蓄積が消失している患者が確認されたにも関わらず認知機能の低下は抑制されておらず<ref><pubmed> 12640446 </pubmed></ref>、アミロイドカスケード仮説に基づいた抗Aβ療法に疑義が呈された。しかし近年の大規模臨床観察研究や、FAD変異キャリヤーのバイオマーカー解析などから、Aβ蓄積は[[アルツハイマー病]]発症から15-20年以上前に始まり、引き続いてタウ病変が惹起されること<ref><pubmed> 22784036 </pubmed></ref>、老人斑蓄積が確認される健常者やMCIがADを発症する確率が有意に高いことが明らかとなり<ref><pubmed> 19587325 </pubmed></ref><ref><pubmed> 19346482 </pubmed></ref>、Aβの蓄積が脳[[アミロイドーシス]]としての[[アルツハイマー病]]病変における最上流プロセスであることは間違いないと考えられている。そして抗Aβ抗体医薬の一つ[[wikipedia:en:Solanezumab|Solanezumab]]の治験においては、全体としてはエンドポイントが達成できなかったものの、mild-to-moderateに分類される、比較的早期の[[アルツハイマー病]]患者においては認知機能の低下が抑制されたと報告されている([https://investor.lilly.com/releasedetail.cfm?releaseid=711933 Detailed Results of the Phase 3 Solanezumab EXPEDITION Studies])。そのような観点から、未発症期に個々人のAD発症リスクを正しく理解して抗Aβ療法を先制医療として開始することが正しいのではないかと考えられている。
 剖検脳(図4)において老人斑の疾患特異性が高いのに対して、[[神経原線維変化]]は様々な神経変性疾患において観察されること、そして非認知症健常者においても老人斑蓄積が認められることから、Aβ蓄積とタウ病変である神経原線維変化の関係については、長らく様々な議論がなされてきた。しかしほぼ全てのFAD遺伝子変異がAβ蓄積を亢進する一方で、Aβ産生を抑制する変異が[[認知機能]]低下に対する防御的変異として同定されたこと、またタウ遺伝子変異に起因し、老人斑蓄積を認めない[[前頭側頭葉変性症]]が見出され、Aβはアルツハイマー病を惹起する毒性分子であり、タウ病変はその下流で神経細胞死に直接関与するプロセスであると考えられるようになった。そしてモデルマウスを用いて、Aβ蓄積がタウ病変を亢進させる<ref><pubmed> 11520987 </pubmed></ref><ref><pubmed> 11520988 </pubmed></ref>ことや、脳脊髄液中のタウ濃度を上昇させる<ref><pubmed> 23863834 </pubmed></ref>ことが示された。
 
 一方でこれまでに多くのAβに対する治療法開発が失敗に終わってきた。特にAβワクチン療法AN-1792の治験では、老人斑蓄積が消失している患者が確認されたにも関わらず認知機能の低下は抑制されておらず<ref><pubmed> 12640446 </pubmed></ref>、アミロイドカスケード仮説に基づいた抗Aβ療法に疑義が呈された。しかし近年の大規模臨床観察研究や、FAD変異キャリヤーのバイオマーカー解析などから、Aβ蓄積はアルツハイマー病発症から15-20年以上前に始まり、引き続いてタウ病変が惹起されること<ref><pubmed> 22784036 </pubmed></ref>、老人斑蓄積が確認される健常者やmild cognitive impairment(MCI)がアルツハイマー病を発症する確率が有意に高いことが明らかとなり<ref><pubmed> 19587325 </pubmed></ref><ref><pubmed> 19346482 </pubmed></ref>、Aβの蓄積が脳アミロイドーシスとしてのアルツハイマー病病変における最上流プロセスであることは間違いないと考えられている。そして抗Aβ抗体医薬の一つ[[Solanezumab]]の治験においては、全体としてはエンドポイントが達成できなかったものの、mild-to-moderateに分類される、比較的早期の[[アルツハイマー病]]患者においては認知機能の低下が抑制されたと報告されている([https://investor.lilly.com/releasedetail.cfm?releaseid=711933 Detailed Results of the Phase 3 Solanezumab EXPEDITION Studies])。そのような観点から、未発症期に個々人のAD発症リスクを正しく理解して抗Aβ療法を先制医療として開始することが正しいのではないかと考えられている。


==参考文献==
==参考文献==
<references/>
<references/>

案内メニュー