「プロテアソーム」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
英語名:proteasome 独:Proteasom 仏:protéasome
英語名:proteasome 独:Proteasom 仏:protéasome


{{box|text= [[真核生物]]の細胞内には進化的に保存された二つのタンパク質分解系、[[ユビキチン・プロテアソームシステム]](UPS)と[[オートファジー・リソソームシステム]]が存在している。UPSは選択的タンパク質を担う中心的な酵素系であり、一方、オートファジー・リソソームシステムは一般に非選択的なタンパク質を担っている。プロテアソームは、[[ユビキチン]]化されたタンパク質を選択的に分解する[[タンパク質分解酵素]]の巨大複合体である。ユビキチン化されたタンパク質の除去により、[[細胞周期]]・[[アポトーシス]]・[[シグナル伝達]]・[[wj:転写|転写]]制御・[[シナプス可塑性]]などに関与する。その破綻により異常タンパク質の細胞内蓄積を来たし、[[神経変成疾患]]の発症につながる。}}
{{box|text= [[真核生物]]の細胞内には進化的に保存された二つのタンパク質分解系、[[ユビキチン・プロテアソームシステム]](UPS)と[[オートファジー・リソソームシステム]]が存在している。UPSは選択的タンパク質分解を担う中心的な酵素系であり、一方、オートファジー・リソソームシステムは一般に非選択的なタンパク質を担っているが、最近障害したタンパク質凝集体、異常・過剰オルガネラ、細胞内に侵入した細菌等を得特異的に排除する選択的オートファジーが注目されている。プロテアソームは、[[ユビキチン]]化されたタンパク質を選択的に分解する巨大で複雑な[[タンパク質分解酵素]]複合体である。ユビキチン化されたタンパク質の除去により、[[細胞周期]]・[[アポトーシス]]・[[シグナル伝達]]・[[wj:転写|転写]]制御・品質管理・[[シナプス可塑性]]などに関与する。これらの破綻により異常タンパク質の細胞内蓄積を来たし、[[神経変成疾患]]の発症につながる。}}


== プロテアソームとは ==
== プロテアソームとは ==
 タンパク質は、細胞内で絶えず合成と分解を繰り返しており、動的なリサイクル([[wj:新陳代謝|新陳代謝]])システムを構成している。特にタンパク質分解は多様な生体反応を不可逆的に制御する方法として発生や[[分化]]など様々な生命現象に不可欠な役割を果たしている。細胞内に生じた不良品の積極的な除去に深く関与しているほか、良品であっても不要な(細胞活動に支障をきたす)場合、あるいは緊急時の栄養素の確保のために、積極的に作動される。このようにタンパク質は細胞内でリサイクルし, 動的平衡を保つことによって身体の中を浄化(不要品のクリアランス)して新鮮さを保ち、健康を維持している。
 タンパク質は、細胞内で絶えず合成と分解を繰り返しており、動的なリサイクル([[wj:新陳代謝|新陳代謝]])システムを構成している。特にタンパク質分解は多様な生体反応を不可逆的に制御する方法として発生や[[分化]]など様々な生命現象に不可欠な役割を果たしている。また細胞内に生じた不良品の積極的な除去に深く関与しているほか、良品であっても不要な(細胞活動に支障をきたす)場合、あるいは緊急時の栄養素の確保のために、積極的に動員される。このようにタンパク質は細胞内でリサイクルし, 動的平衡を保つことによって身体の中を浄化(不要品のクリアランス)して新鮮さを保ち、健康を維持している。


 真核生物の細胞内には進化的に保存された二つのタンパク質分解系、ユビキチン・プロテアソームシステム(UPS)とオートファジー・[[リソソーム]]システムが存在しているが、このうちUPSは選択的タンパク質を担う中心的な酵素系で、プロテアソームは、[[ユビキチン]]化されたタンパク質を選択的に分解する[[タンパク質分解酵素]]の巨大複合体である。
 真核生物の細胞内には進化的に保存された二つのタンパク質分解系、ユビキチン・プロテアソームシステム(UPS)とオートファジー・[[リソソーム]]システムが存在しているが、このうちUPSは選択的タンパク質を担う中心的な酵素系で、プロテアソームは、[[ユビキチン]]化されたタンパク質を選択的に分解する大掛かりな細胞内装置である。


=== ユビキチンシステム===
=== ユビキチンシステム===
18行目: 18行目:
[[image:プロテオソーム1.jpg|thumb|350px|'''図1.ユビキチン・プロテアソームシステム'''<br>Ub:ユビキチン、E1: Ub活性化酵素、E2: Ub結合酵素、E3: Ubリガーゼ、DUB: 脱ユビキチン酵素。基質を選別するE3酵素は、HECT型とRING型に大別される。26Sプロテアソームは不要なユビキチン化タンパク質をエネルギー依存的に分解する巨大なタンパク質分解酵素複合体である<ref name=ref22><pubmed>19165213</pubmed></ref>。UPSの作動機構においてATPの加水分解は、基質のユビキチン化(E1の作用)と26Sプロテアソームによる分解作用(基質のアンフォールディング)の二つのプロセスに必要である。]]
[[image:プロテオソーム1.jpg|thumb|350px|'''図1.ユビキチン・プロテアソームシステム'''<br>Ub:ユビキチン、E1: Ub活性化酵素、E2: Ub結合酵素、E3: Ubリガーゼ、DUB: 脱ユビキチン酵素。基質を選別するE3酵素は、HECT型とRING型に大別される。26Sプロテアソームは不要なユビキチン化タンパク質をエネルギー依存的に分解する巨大なタンパク質分解酵素複合体である<ref name=ref22><pubmed>19165213</pubmed></ref>。UPSの作動機構においてATPの加水分解は、基質のユビキチン化(E1の作用)と26Sプロテアソームによる分解作用(基質のアンフォールディング)の二つのプロセスに必要である。]]


 1977年、米国ハーバード大学の[[wj:ゴールドバーグ|Goldberg]]のグループは[[wj:網状赤血球|網状赤血球]]の抽出液がエネルギー依存性のタンパク質分解活性を示すことを見いだした<ref name=ref1><pubmed>264694</pubmed></ref>。その後間もなく、イスラエルの[[wj:Hershko]]と[[wj:Ciechanover]]は、米国のRoseと共に、熱安定性の小さなタンパク質である[[ユビキチン]]がその主役であることを見出した。
 1977年、米国ハーバード大学の[[wj:ゴールドバーグ|Goldberg]]のグループは[[wj:網状赤血球|網状赤血球]]の抽出液がエネルギー依存性のタンパク質分解活性を示すことを見いだした<ref name=ref1><pubmed>264694</pubmed></ref>。その後間もなく、イスラエルの[[wj:アブラム・ハーシュコ|Hershko]]と[[wj:アーロン・チカノーバー|Ciechanover]]は、米国のRoseと共に、熱安定性の小さなタンパク質である[[ユビキチン]]がその主役であることを見出した。


 ユビキチンは76個のアミノ酸からなる小さなタンパク質であり、進化的保存性が高くそのアミノ酸配列は全ての真核生物でほとんど同じである。1980年頃までに彼らは、ユビキチンが[[ユビキチン活性化酵素|活性化酵素]](E1)・[[ユビキチン結合酵素|結合酵素]](E2)・[[ユビキチンリガーゼ|リガーゼ]](E3)から構成された複合酵素系(ユビキチンシステム)によって標的タンパク質に[[wj:共有結合|共有結合]](ユビキチンのC末端の[[wj:カルボキシル基|カルボキシル基]]とタンパク質中の[[wj:リジン|リジン]]残基の&epsilon;-アミノ基が縮合した[[wj:イソペプチド結合|イソペプチド結合]])する[[wj:翻訳後修飾|翻訳後修飾]]分子であることを明らかにした(図1)<ref name=ref2><pubmed>1323239</pubmed></ref> <ref name=ref3><pubmed>9759494</pubmed></ref>。このE1の作用には[[wj:ATP|ATP]]の[[wj:加水分解|加水分解]]が必要である。そしてタンパク質に結合したユビキチン内の(主として48番目の)リジン残基と新しいユビキチン分子内のC末端の[[wj:グリシン|グリシン]]の間でイソペプチド結合ができ、さらにユビキチン分子間での縮合反応を繰り返すことによって、多数のユビキチン分子が鎖状に伸長した[[ポリユビキチン鎖]]が形成される。
 ユビキチンは76個のアミノ酸からなる小さなタンパク質であり、進化的保存性が高くそのアミノ酸配列は全ての真核生物でほとんど同じである。1980年頃までに彼らは、ユビキチンが[[ユビキチン活性化酵素|活性化酵素]](E1:2種ヒト遺伝子にコード)・[[ユビキチン結合酵素|結合酵素]](E2:約20種)・[[ユビキチンリガーゼ|リガーゼ]](E3:約600種)から構成された複合酵素系(ユビキチンシステム)によって標的タンパク質に[[wj:共有結合|共有結合]](ユビキチンのC末端の[[wj:カルボキシル基|カルボキシル基]]とタンパク質中の[[wj:リジン|リジン]]残基の&epsilon;-アミノ基が縮合した[[wj:イソペプチド結合|イソペプチド結合]])する[[wj:翻訳後修飾|翻訳後修飾]]分子であることを明らかにした(図1)<ref name=ref2><pubmed>1323239</pubmed></ref> <ref name=ref3><pubmed>9759494</pubmed></ref>。このE1の作用には[[wj:ATP|ATP]]の[[wj:加水分解|加水分解]]が必要である。そしてタンパク質に結合したユビキチン内の(主として48番目の)リジン残基と新しいユビキチン分子内のC末端の[[wj:グリシン|グリシン]]の間でイソペプチド結合ができ、さらにユビキチン分子間での縮合反応を繰り返すことによって、多数のユビキチン分子が鎖状に伸長した[[ポリユビキチン鎖]]が形成される。


 Hershkoら及びVarshavskyらは生じたポリユビキチン鎖が基質タンパク質を分解装置に輸送するためのシグナル(目印)として機能するという“ユビキチンシグナル”仮説を提唱した<ref name=ref2 /> <ref name=ref3 /> <ref name=ref4><pubmed>11017125</pubmed></ref>。この仮説は、ポリユビキチン鎖の形成が(オーバーオールの反応としては)分解シグナルの提示反応であるが、実際に起きている化学反応は(イソ)ペプチド結合の形成(タンパク質合成と類似の反応)であり、エネルギー要求性を説明できた。2004年、ユビキチンシステムの発見者たち3名は、[[wj:ノーベル化学賞|ノーベル化学賞]]を受賞した。
 Hershkoら及びVarshavskyらは生じたポリユビキチン鎖が基質タンパク質を分解装置に輸送するためのシグナル(目印)として機能するという“ユビキチンシグナル”仮説を提唱した<ref name=ref2 /> <ref name=ref3 /> <ref name=ref4><pubmed>11017125</pubmed></ref>。この仮説は、ポリユビキチン鎖の形成が(オーバーオールの反応としては)分解シグナルの提示反応であるが、実際に起きている化学反応は(イソ)ペプチド結合の形成(タンパク質合成と類似の反応)であり、エネルギー要求性を興味深いことに細胞内には、ユビキチン化の逆反応を触媒する脱ユビキチン酵素(deubiquitylating enzyme:DUB)あるいはUSP(ubiquitin specific protease)が存在し、それらは生物種を問わず大きな遺伝子ファミリー(約80種)を形成している。多数のDUBが存在することは、ユビキチン化による翻訳後修飾が可逆的かつ多面的であることを示唆している。2004年、ユビキチンシステムの発見者たち3名は、[[wj:ノーベル化学賞|ノーベル化学賞]]を受賞した。
 
 ユビキチンは二つの異なったタイプの遺伝子にコードされている。一つは、ユビキチンとリボソーム蛋白質の融合遺伝子であり、もう一つは数個〜10数個のユビキチンがタンデムに連なったポリユビキチン遺伝子である。これらの融合蛋白質からユビキチンを切り出す際にも、上述のDUBが使用される。ポリユビキチン遺伝子は、1回の転写・翻訳で多数のユビキチンを合成することができる点で秀逸であり、かつ熱ショック応答遺伝子でもあることから、細胞は環境ストレスに曝されたとき、必要とするユビキチンを迅速に大量生成することができるよう合理的に設計されている。このことは、細胞内のユビキチンレベルが外環境の変化に応答して厳格に制御されていることを示唆している。実際、ユビキチンの量は、多くても少なくても細胞は異常になり、常に適切に保たれる必要がある。


===プロテアソームの発見===
===プロテアソームの発見===
 1983年、われわれはユビキチン化タンパク質の分解にATPのエネルギーが必要であることを見出し、同じくエネルギーを必要とするユビキチン間のステップに加え、“エネルギー依存性タンパク質分解機構の2段階説”を発表した<ref name=ref6><pubmed>6304111</pubmed></ref>。後に、このATP要求性のタンパク質分解反応を触媒する酵素が、真核生物のATP依存性プロテアーゼであることが判明し、1988年、プロテアソーム(プロテアーゼ活性を有した巨大粒子〜some)と命名した。
 1983年、われわれはエネルギーを必要とするユビキチン化反応のステップに加えて、ユビキチン化タンパク質の分解にATPのエネルギーが必要であることを見出し、“エネルギー依存性タンパク質分解機構の2段階説”を発表した<ref name=ref6><pubmed>6304111</pubmed></ref>。後に、このATP要求性のタンパク質分解反応を触媒する酵素が、真核生物のATP依存性プロテアーゼであることが判明し、1988年、プロテアソーム(プロテアーゼ活性を有した巨大粒子〜some)と命名した。


==プロテアソームの分子構造==
==プロテアソームの分子構造==


[[image:プロテオソーム2.jpg|thumb|350px|'''図2.26S プロテアソームの構造モデル:分子形状とサブユニット構成'''<br>左図:26Sプロテアソーム(CPとRPの複合体)の電子顕微鏡による分子形状(単粒子解析: 独マックスプランク研究所W. Baumeister、S. Nickellから供与)。U:ユビキチン。<br>右図:サブユニットの構成モデル.触媒粒子(CP、20Sプロテアソーム)は&alpha;/&beta;リングが&alpha;&beta;&beta;&alpha;の順に会合した円柱状粒子。調節粒子(RP、PA700)はlid(蓋部)とbase(基底部)から構成された複合体。RPはRpn(RP non-ATPase)とRpt(RP triple-ATPase)サブユニット群から構成されている。Rpn10、Rpn13:ポリユビキチンリセプター、Rpn11:DUB、 &beta;1 (カスパーゼ様活性), &beta;2(トリプシン様活性), &beta;5(キモトリプシン様活性):触媒サブユニット。図には示していないが、USP14はRpn1に、そして Uch37はRpn13を介してRpn2に会合している(図3参照)。]]
[[image:プロテオソーム2.jpg|thumb|350px|'''図2.26S プロテアソームの構造モデル:分子形状とサブユニット構成'''<br>左図:26Sプロテアソーム(CPとRPの複合体)の電子顕微鏡による分子形状(単粒子解析: 独マックスプランク研究所W. Baumeister、S. Nickellから供与)。U:ユビキチン。<br>右図:サブユニットの構成モデル.触媒粒子(CP、20Sプロテアソーム)は&alpha;/&beta;リングが&alpha;&beta;&beta;&alpha;の順に会合した円柱状粒子。調節粒子(RP、PA700)はlid(蓋部)とbase(基底部)から構成された複合体。RPはRpn(RP non-ATPase)とRpt(RP triple-ATPase)サブユニット群から構成されている。Rpn10、Rpn13:ポリユビキチンリセプター、Rpn11:DUB、 &beta;1 (カスパーゼ様活性), &beta;2(トリプシン様活性), &beta;5(キモトリプシン様活性):触媒サブユニット。図には示していないが、USP14はRpn1に、そして Uch37はRpn13を介してRpn2に会合している(図3参照)。]]
[[image:プロテオソーム3.jpg|thumb|350px|'''図3.26Sプロテアソームの作動機構モデル'''<ref name=ref11><pubmed>22215586</pubmed></ref><ref name=ref12><pubmed>22237024</pubmed></ref><br>Ub:ユビキチン、Rpn10、Rpn13:ユビキチンリセプター、Rpn11、USP14/(酵母のUbp6)、Uch37:脱ユビキチン酵素]]
[[image:プロテオソーム3.jpg|thumb|350px|'''図3.26Sプロテアソームの作動機構モデル'''<ref name=ref11><pubmed>22215586</pubmed></ref><ref name=ref12><pubmed>22237024</pubmed></ref><br>Ub:ユビキチン、Rpn10、Rpn13:ユビキチンリセプター、Rpn11、USP14/(酵母のUbp6)、Uch37:脱ユビキチン酵素]]
[[image:プロテオソーム4.jpg|thumb|350px|'''図4.26Sプロテアソームの分子集合機構経路'''<ref name=ref25><pubmed>22350895</pubmed></ref>]]
[[image:プロテオソーム4.jpg|thumb|350px|'''図4.26Sプロテアソームの分子集合機構経路'''<ref name=ref25><pubmed>22350895</pubmed></ref>]]


 触媒粒子(core particle, CP、20Sプロテアソーム)の両端に調節粒子(regulatory particle, 19S RP)が会合した分子量250万、総サブユニット数66個から構成されたATP依存性プロテアーゼ多成分複合体を26Sプロテアソームという(図2)<ref name=ref7><pubmed>8811196</pubmed></ref> <ref name=ref8><pubmed>9476896</pubmed></ref> <ref name=ref9><pubmed>19145068</pubmed></ref>。原子レベルでの構造は不明であり、現在、[[wj:極低温電子顕微鏡|極低温電子顕微鏡]](cryo-electron microscopy; Cryo-EM)による[[wj:単粒子解析|単粒子解析]]が進行中である<ref name=ref10><pubmed>21098295</pubmed></ref>
 触媒粒子(core particle, CP、20Sプロテアソーム)の両端に調節粒子(regulatory particle, 19S RP)が会合した分子量250万、総サブユニット数66個から構成されたATP依存性プロテアーゼ多成分複合体を26Sプロテアソームという(図2下パネル)<ref name=ref7><pubmed>8811196</pubmed></ref> <ref name=ref8><pubmed>9476896</pubmed></ref> <ref name=ref9><pubmed>19145068</pubmed></ref>。原子レベルでの構造は不明であり、現在、[[wj:極低温電子顕微鏡|極低温電子顕微鏡]](cryo-electron microscopy; Cryo-EM)による[[wj:単粒子解析|単粒子解析]]と個々の構成サブユニットの結晶構造を組み合わせた解析が進行中である<ref name=ref10><pubmed>21098295</pubmed></ref>(図2上パネル)。


 また19S RP以外の活性化因子の存在や、20Sプロテアソームが活性化因子の介在なしに天然変成タンパク質や酸化修飾タンパク質を直接分解することも報告されている<ref name=ref20><pubmed>18636510</pubmed></ref> <ref name=ref21><pubmed>20498273</pubmed></ref>。
 また19S RP(別称:PA700)以外の活性化因子(PA28, PA200等)の存在や、20Sプロテアソームが活性化因子の介在なしに天然変成タンパク質や酸化修飾タンパク質を直接分解することも報告されている<ref name=ref20><pubmed>18636510</pubmed></ref> <ref name=ref21><pubmed>20498273</pubmed></ref>。


===触媒粒子===
===触媒粒子===
 触媒粒子は&alpha;リングと&beta;リング(各々7種のサブユニットから構成)が&alpha;&beta;&beta;&alpha;の順で会合した分子量75万の円筒型粒子である。本酵素は[[カスパーゼ]]型(&beta;1)、[[wj:トリプシン|トリプシン]]型(&beta;2)、[[wj:キモトリプシン|キモトリプシン]]型(&beta;5)の触媒活性を有しており、これらの活性中心は&beta;リングの内表面に露出している。CPは、通常、&alpha;リングが閉じているため細胞内では不活性型として存在している。
 触媒粒子は&alpha;リングと&beta;リング(各々7種のサブユニットから構成)が&alpha;&beta;&beta;&alpha;の順で会合した分子量75万の円筒型粒子(α<sub>1-7</sub>β<sub>1-7</sub>β<sub>1-7</sub>α<sub>1-7</sub>)である。本酵素は[[カスパーゼ]]型(&beta;1)、[[wj:トリプシン|トリプシン]]型(&beta;2)、[[wj:キモトリプシン|キモトリプシン]]型(&beta;5)の触媒活性を有しており、これらの活性中心は&beta;リングの内表面に露出している。CPは、通常、&alpha;リングが閉じているため細胞内では不活性型として存在している(図3)。


===調節粒子===
===調節粒子===
 調節粒子(別称:PA700)はlid(蓋部)とbase(基底部)から構成されており,lid複合体とbase複合体は、夫々10個と9個のサブユニットから構成されている。二つのユビキチンリセプターRpn10とRpn13は分子表面の離れた位置に存在してユビキチン化タンパク質を捕捉している<ref name=ref11><pubmed>22215586</pubmed></ref>。調節粒子にはポリユビキチン鎖を根本から切断して解離するRpn11と、それ以外に末端からユビキチンを1個ずつ解離させる酵素USP14([[wj:酵母|酵母]]のUbp6)とUch37(酵母には存在しない)の3つの脱ユビキチン酵素が存在する。
 調節粒子(別称:PA700)はlid(蓋部)とbase(基底部)から構成されており,lid複合体とbase複合体は、各々10個と9個のサブユニットから構成されている。二つのユビキチンリセプターRpn10とRpn13は分子表面の離れた位置に存在してユビキチン化タンパク質を捕捉している<ref name=ref11><pubmed>22215586</pubmed></ref>。調節粒子にはポリユビキチン鎖を根本から切断して解離するRpn11と、それ以外に末端からユビキチンを1個ずつ解離させる酵素USP14([[wj:酵母|酵母]]のUbp6)とUch37(酵母には存在しない)の3つの脱ユビキチン酵素が存在する。


 Cryo-EMよる解析からlidサブユニット群の位置情報が明らかにされている<ref name=ref12><pubmed>22237024</pubmed></ref>。またbaseは6種のAAA型[[wj:ATPase|ATPase]]サブユニット(Rpt1〜Rpt6)を含んでおり、この冠(Crown)型構造のATPaseリングは,触媒粒子の&alpha;リングと結合してその中央部のゲートを開き,基質タンパク質の通過を可能にさせる機能を有している他、ATPの加水分解エネルギーを利用してタンパク質の3次元構造を破壊(アンフォールディング)し,変性した基質が&alpha;リングを通って&beta;リングの内部に到達できるようにするアンチシャペロン作用を持っている<ref name=ref13><pubmed>19489727</pubmed></ref> <ref name=ref14><pubmed>17889660</pubmed></ref> <ref name=ref15><pubmed>21335235</pubmed></ref>(図3)。
 Cryo-EMよる解析からlidサブユニット群の位置情報が明らかにされている<ref name=ref12><pubmed>22237024</pubmed></ref>。またbaseは6種のAAA型[[wj:ATPase|ATPase]]サブユニット(Rpt1〜Rpt6)を含んでおり、この冠(Crown)型構造のATPaseリングは,触媒粒子の&alpha;リングと結合してその中央部のゲートを開き,基質タンパク質の通過を可能にさせる機能を有している他、ATPの加水分解エネルギーを利用してタンパク質の3次元構造を破壊(アンフォールディング)し,変性した基質が&alpha;リングを通って&beta;リングの内部に到達できるようにするアンチシャペロン作用を持っている<ref name=ref13><pubmed>19489727</pubmed></ref> <ref name=ref14><pubmed>17889660</pubmed></ref> <ref name=ref15><pubmed>21335235</pubmed></ref>(図4)。


===PA28===
===PA28===
55行目: 59行目:


===PA200===
===PA200===
 PA200も活性化因子として知られ、酵母から[[wj:ヒト|ヒト]]まで普遍的に存在するが、その役割は諸説あって確定していない<ref name=ref><pubmed>21389348</pubmed></ref>。
 PA200(酵母のBlm10)も活性化因子として知られ、酵母から[[wj:ヒト|ヒト]]まで普遍的に存在するが、その役割は諸説あって確定していない<ref name=ref><pubmed>21389348</pubmed></ref>。


==プロテアソーム複合体形成に関与するシャペロン分子==
==プロテアソーム複合体形成に関与するシャペロン分子==


 プロテアソームの分子集合には専門的な多数のシャペロン分子が関与している(図4)<ref name=ref22><pubmed>19165213</pubmed></ref> <ref name=ref23><pubmed>21461838</pubmed></ref>。
 プロテアソームの分子集合には専門的な多数のシャペロン分子が関与している(図5)<ref name=ref22><pubmed>19165213</pubmed></ref> <ref name=ref23><pubmed>21461838</pubmed></ref>。


===Proteasome Assembling Chaperone===
===Proteasome Assembling Chaperone===
82行目: 86行目:
 ユビキチン-プロテアソーム系をコードする遺伝子の数は、ゲノム総遺伝子数の3〜5 %を占めると推定されており、[[細胞周期]]・[[wj:DNA修復|DNA修復]]・アポトーシス・シグナル伝達・シナプス可塑性・[[転写]]制御・[[代謝]]調節・[[免疫応答]]・タンパク質の品質管理・[[ストレス応答]]・[[wj:感染|感染]]応答など、迅速に、順序よく、一過的にかつ一方向に決定する手段としての役割を担っている<ref name=ref27><pubmed>21860393</pubmed></ref>。これらの生理作用は、細胞内における標的タンパク質の量の厳密な制御を反映しており、とくにユビキチンシステムの多様性に負うところが大きい。一方、プロテアソームは分解系としての役割以外に、前駆体タンパク質のプロセシングによる活性型への転換(例えば、NF-&kappa;Bの成熟プロセス)やその生成ペプチドを抗原エピトープとして利用するなどポジティブな生命応答に貢献していることも知られている。
 ユビキチン-プロテアソーム系をコードする遺伝子の数は、ゲノム総遺伝子数の3〜5 %を占めると推定されており、[[細胞周期]]・[[wj:DNA修復|DNA修復]]・アポトーシス・シグナル伝達・シナプス可塑性・[[転写]]制御・[[代謝]]調節・[[免疫応答]]・タンパク質の品質管理・[[ストレス応答]]・[[wj:感染|感染]]応答など、迅速に、順序よく、一過的にかつ一方向に決定する手段としての役割を担っている<ref name=ref27><pubmed>21860393</pubmed></ref>。これらの生理作用は、細胞内における標的タンパク質の量の厳密な制御を反映しており、とくにユビキチンシステムの多様性に負うところが大きい。一方、プロテアソームは分解系としての役割以外に、前駆体タンパク質のプロセシングによる活性型への転換(例えば、NF-&kappa;Bの成熟プロセス)やその生成ペプチドを抗原エピトープとして利用するなどポジティブな生命応答に貢献していることも知られている。


===細胞性免疫応答===
===免疫型プロテアソームの発見===
 
  適応(獲得)免疫の中心的なテーマである自己と非自己の識別(細胞性免疫応答)において必須な役割を果たすために、プロテアソームのアイソフォーム(免疫型プロテアソーム)(図5)が存在する<ref name=ref28><pubmed>9700509</pubmed></ref> <ref name=ref29><pubmed>12078479</pubmed></ref> <ref name=ref30><pubmed>21387144</pubmed></ref>。免疫型プロテアソームの遺伝子は、進化的には適応免疫と同時期に誕生した<ref name=ref28 /> <ref name=ref40><pubmed>21748441</pubmed></ref>。
 適応(獲得)免疫の中心的なテーマである自己と非自己の識別において必須な役割を果たすために、プロテアソームのアイソフォーム(免疫型プロテアソーム)(図5)が存在する<ref name=ref28><pubmed>9700509</pubmed></ref> <ref name=ref29><pubmed>12078479</pubmed></ref> <ref name=ref30><pubmed>21387144</pubmed></ref>。免疫型プロテアソームの遺伝子は、進化的には適応免疫の誕生と同時期に獲得している<ref name=ref28 /> <ref name=ref40><pubmed>21748441</pubmed></ref>。


====免疫プロテアソーム====
====免疫プロテアソーム====
:[[wj:主要組織適合性遺伝子複合体|主要組織適合性遺伝子複合体]] (major histocompatibility antigen comple; MHC)を獲得した[[wj:有顎脊椎動物|有顎脊椎動物]]では、プロテアソームはMHCクラスI結合ペプチド産生の必須酵素でもあり、[[wj:CD8|CD8]]<sup>+</sup>T細胞を介した細胞性免疫応答に不可欠な役割を果たしている。[[wj:ウイルス|ウイルス]]や[[wj:ガン抗原|ガン抗原]]等の内在性抗原のプロセシング酵素として専門的に作用する酵素が存在する。これは標準/構成型プロテアソーム(standard/constitutive proteasome)と区別して、 “免疫プロテアソーム(immunoproteasome)”と呼ばれる<ref name=ref31><pubmed>8066462</pubmed></ref> <ref name=ref32><pubmed>8666937</pubmed></ref> <ref name=ref33><pubmed>7964165</pubmed></ref>。この亜型酵素は[[wj:インターフェロン&gamma;|インターフェロン&gamma;]](IFN&gamma;)などの[[サイトカイン]]により強く誘導される3種の新しい&beta;型触媒サブユニット(&beta;1i, &beta;2i, &beta;5i)が優先的分子集合機構によって分子内置換した酵素である。
 [[wj:主要組織適合性遺伝子複合体|主要組織適合性遺伝子複合体]] (major histocompatibility antigen comple; MHC)を獲得した[[wj:有顎脊椎動物|有顎脊椎動物]]では、プロテアソームはMHCクラスI結合ペプチド産生の必須酵素でもあり、[[wj:CD8|CD8]]<sup>+</sup>T細胞を介した細胞性免疫応答に不可欠な役割を果たしている。[[wj:ウイルス|ウイルス]]や[[wj:ガン抗原|ガン抗原]]等の内在性抗原のプロセシング酵素として専門的に作用する酵素が存在する。これは標準/構成型プロテアソーム(standard/constitutive proteasome)と区別して、“免疫プロテアソーム(immunoproteasome)”と呼ばれる<ref name=ref31><pubmed>8066462</pubmed></ref> <ref name=ref32><pubmed>8666937</pubmed></ref> <ref name=ref33><pubmed>7964165</pubmed></ref>。この亜型酵素は[[wj:インターフェロン&gamma;|インターフェロン&gamma;]](IFN&gamma;)などの[[サイトカイン]]により強く誘導される3種の新しい&beta;型触媒サブユニット(&beta;1i, &beta;2i, &beta;5i)が優先的分子集合機構によって分子内置換した酵素である(図6中モデル)。


:免疫プロテアソームは高いキモトリプシン様活性を有し、MHCクラスIのペプチド収容溝に高い親和性をもつペプチドを効率的に産生することができる(分子レベルでの自己と非自己の識別)。当初免疫プロテアソームは抗原プロセシングに特化した酵素と見られていたが、最近、免疫プロテアソームが有害タンパク質の凝集阻止を通してインターフェロン依存的な[[酸化ストレス]]による細胞死を防御していること<ref name=ref34><pubmed>20723761</pubmed></ref>や&beta;5iの特異的な阻害剤PR-957がサイトカインの産生や自己抗体レベルを低下させることから自己免疫疾患に関与していること<ref name=ref35><pubmed>19525961</pubmed></ref> <ref name=ref36><pubmed>20010787</pubmed></ref>などの役割を担っていることが示唆されている。
 免疫プロテアソームは高いキモトリプシン様活性を有し、MHCクラスIのペプチド収容溝に高い親和性をもつペプチドを効率的に産生することができる(分子レベルでの自己と非自己の識別)。当初免疫プロテアソームは抗原プロセシングに特化した酵素と見られていたが、最近、免疫プロテアソームが有害タンパク質の凝集阻止を通してインターフェロン依存的な[[酸化ストレス]]による細胞死を防御していること<ref name=ref34><pubmed>20723761</pubmed></ref>や&beta;5iの特異的な阻害剤PR-957がサイトカインの産生や自己抗体レベルを低下させることから自己免疫疾患に関与していること<ref name=ref35><pubmed>19525961</pubmed></ref> <ref name=ref36><pubmed>20010787</pubmed></ref>などの役割を担っていることが示唆されている。


====胸腺プロテアソーム====
====胸腺プロテアソーム====

案内メニュー