113
回編集
Toshikiiwabuchi (トーク | 投稿記録) 細編集の要約なし |
Toshikiiwabuchi (トーク | 投稿記録) 細編集の要約なし |
||
2行目: | 2行目: | ||
=語彙とは= | =語彙とは= | ||
私たちは非常にたくさんの[[wikipedia:ja:語|語]]([[wikipedia:word|word]])をほとんど無自覚に覚えている。たとえば、英語の母語話者は高校卒業時点で平均60,000語ほどの語彙量を持つと推定される<ref> '''G A Miller''' <br>The Science of Words<br> ''Scientific Americal Library, New York'':1991 </ref>。あらゆる[[wikipedia:ja:句|句]]([[wikipedia:Phrase|phrase]])や[[wikipedia:ja:文|文]]([[wikipedia:Sentence_(linguistics)|sentence]])は語を[[文法]]的なルールに従って組み合わせることで構築される。このことからも、語に関する知識が言語を用いる上で重要であることは疑う余地がない。 | 私たちは非常にたくさんの[[wikipedia:ja:語|語]]([[wikipedia:word|word]])をほとんど無自覚に覚えている。たとえば、英語の母語話者は高校卒業時点で平均60,000語ほどの語彙量を持つと推定される<ref> '''G A Miller''' <br>The Science of Words.<br> ''Scientific Americal Library, New York'':1991 </ref>。あらゆる[[wikipedia:ja:句|句]]([[wikipedia:Phrase|phrase]])や[[wikipedia:ja:文|文]]([[wikipedia:Sentence_(linguistics)|sentence]])は語を[[文法]]的なルールに従って組み合わせることで構築される。このことからも、語に関する知識が言語を用いる上で重要であることは疑う余地がない。 | ||
このように語は言語表現の基本的な要素であるが、一般的に「語」といわれるものの多くはそれ自体が内部構造を持っていて、より小さな要素へと分解され得る。たとえば「おみそしる」という語は「お」と「みそしる」の2つの部分に分けることができ、さらに「みそしる」は「みそ」と「しる」の2つの部分に分けられる、といった具合である。上のような分解を繰り返して意味的に最小となった単位のことを[[wikipedia:ja:形態素|形態素]]([[wikipedia:Morpheme|morpheme]])と呼ぶ。語は単一の形態素、あるいは複数の形態素の結合から成る。ちなみに言語的音声の最小単位を[[wikipedia:ja:音素|音素]]([[wikipedia:Phoneme|phoneme]])と呼ぶが、形態素はひとつ以上の音素から構成される。 | このように語は言語表現の基本的な要素であるが、一般的に「語」といわれるものの多くはそれ自体が内部構造を持っていて、より小さな要素へと分解され得る。たとえば「おみそしる」という語は「お」と「みそしる」の2つの部分に分けることができ、さらに「みそしる」は「みそ」と「しる」の2つの部分に分けられる、といった具合である。上のような分解を繰り返して意味的に最小となった単位のことを[[wikipedia:ja:形態素|形態素]]([[wikipedia:Morpheme|morpheme]])と呼ぶ。語は単一の形態素、あるいは複数の形態素の結合から成る。ちなみに言語的音声の最小単位を[[wikipedia:ja:音素|音素]]([[wikipedia:Phoneme|phoneme]])と呼ぶが、形態素はひとつ以上の音素から構成される。 | ||
30行目: | 30行目: | ||
===単語認知に関するモデル=== | ===単語認知に関するモデル=== | ||
ことばを見聞きしたとき、われわれは苦も無く語彙情報にアクセスして意味を理解する。こうした単語認知研究の初期における重要なモデルとして、Mortonのロゴジェン・モデル(logogen model)<ref> '''J Morton''' <br>Interaction of information in word | ことばを見聞きしたとき、われわれは苦も無く語彙情報にアクセスして意味を理解する。こうした単語認知研究の初期における重要なモデルとして、Mortonのロゴジェン・モデル(logogen model)<ref> '''J Morton''' <br>Interaction of information in word recognition.<br> ''Psychol Rev'':1983, 76();165-178 </ref>がある。このモデルではメンタル・レキシコンの構成ユニットはロゴジェンと呼ばれ、個々の単語に対応する。ロゴジェンは感覚入力(たとえば単語の視覚刺激)に対して応答するが、この応答値がある閾値を超えたときにのみ「対応する単語が認識された」ものとする。さらに、ロゴジェンは単語の使用頻度や文脈の効果を受け、それによって閾値が低下するという特徴を持つ。以上がロゴジェン・モデルの概要である。このモデルは出現頻度効果や文脈効果による語彙アクセスへの影響をある程度定量的に説明することができる。 | ||
ロゴジェン・モデルに続く重要な単語認知モデルとしては、相互活性化(interactive activation: IA)モデル<ref><pubmed> 7058229 </pubmed></ref>が挙げられる。IAモデルは特徴レベル・文字レベル・単語レベルの3つの階層から成る[[ニューラルネットワーク・モデル]]である。ロゴジェン・モデルとは異なり、IAモデルには上述した3つのレベルごとに構成ユニットが存在する。たとえば垂直な線分に対応する特徴ユニット、“A”の文字ユニット、“CAT”の単語ユニットなどがそれぞれの層を構成するのである。特徴ユニットは、対応する特徴を含む文字ユニットに対しては興奮性の、そうでない文字ユニットには抑制性の結合を持つ。文字ユニットと単語ユニットは相互に結合しており、前者の文字が後者の単語に含まれる場合(例.“T”と“TIME”)には両者の結合は興奮性、そうでない場合には抑制性である。また単語レベルのユニット間には強い相互抑制が存在する。IAモデルではこれらの結合を通じてレベル内およびレベル間の相互作用が生じる。単語の視覚入力を最初に受けるのは特徴ユニットであるが、レベル間の結合があるためにその後の処理は各階層で並列的に進行する。またIAモデルの構成ユニットは閾値を持たないが、入力と合う特定の単語ユニットが最も強く活動することで単語認知が実現される。IAモデルもロゴジェン・モデルと同様、頻度や文脈による単語認知の促進効果を再現することが可能である。さらに高次(単語レベル)から低次(文字レベル)へのフィードバックを組み込むことで、先述した単語優位効果も説明できるようになっている。 | ロゴジェン・モデルに続く重要な単語認知モデルとしては、相互活性化(interactive activation: IA)モデル<ref><pubmed> 7058229 </pubmed></ref>が挙げられる。IAモデルは特徴レベル・文字レベル・単語レベルの3つの階層から成る[[ニューラルネットワーク・モデル]]である。ロゴジェン・モデルとは異なり、IAモデルには上述した3つのレベルごとに構成ユニットが存在する。たとえば垂直な線分に対応する特徴ユニット、“A”の文字ユニット、“CAT”の単語ユニットなどがそれぞれの層を構成するのである。特徴ユニットは、対応する特徴を含む文字ユニットに対しては興奮性の、そうでない文字ユニットには抑制性の結合を持つ。文字ユニットと単語ユニットは相互に結合しており、前者の文字が後者の単語に含まれる場合(例.“T”と“TIME”)には両者の結合は興奮性、そうでない場合には抑制性である。また単語レベルのユニット間には強い相互抑制が存在する。IAモデルではこれらの結合を通じてレベル内およびレベル間の相互作用が生じる。単語の視覚入力を最初に受けるのは特徴ユニットであるが、レベル間の結合があるためにその後の処理は各階層で並列的に進行する。またIAモデルの構成ユニットは閾値を持たないが、入力と合う特定の単語ユニットが最も強く活動することで単語認知が実現される。IAモデルもロゴジェン・モデルと同様、頻度や文脈による単語認知の促進効果を再現することが可能である。さらに高次(単語レベル)から低次(文字レベル)へのフィードバックを組み込むことで、先述した単語優位効果も説明できるようになっている。 |
回編集