Nogo

提供: 脳科学辞典
Nogo-Aから転送)

これは、このページの承認済み版であり、最新版でもあります。
移動先: 案内検索

藤谷昌司山下俊英
大阪大学 大学院医学系研究科分子神経科学 分子神経科学
DOI:10.14931/bsd.546 原稿受付日:2012年2月24日 原稿完成日:2012年11月14日
担当編集委員:岡野 栄之(慶應義塾大学 医学部)

 Nogoは脊椎動物中枢神経細胞に対して軸索伸長の阻害効果をもち、髄鞘ミエリン)に含まれる軸索損傷後の再生を阻害する分子であると考えられている。Nogo-Aタンパク質内には2つの軸索伸張阻害作用を有するタンパク質ドメインがあり(Δ20とNogo-66)、軸索伸長阻害のみならず、軸索の先端の成長円錐を虚脱させる作用を持っている。動物実験によりNogo-Aあるいはその下流のシグナルを阻害することにより、神経損傷時における神経軸索の再生を促すことが示されてきた。このことから軸索が損傷を受け、その再生ができないことにより、重度の後遺障害が残る脊髄損傷多発性硬化症のような脱髄疾患における軸索再生治療への期待がかけられている。また、病態時のみならず、脳内の学習記憶のプロセスを強化する過程において重要な役割を果たすことが分かっている。

Reticulon 4
PDB rendering based on 2g31.
Identifiers
Symbols RTN4; ASY; NI220/250; NOGO; NOGO-A; NOGOC; NSP; NSP-CL; Nbla00271; Nbla10545; Nogo-B; Nogo-C; RTN-X; RTN4-A; RTN4-B1; RTN4-B2; RTN4-C
External IDs OMIM604475 MGI1915835 HomoloGene10743 GeneCards: RTN4 Gene
RNA expression pattern
PBB GE RTN4 211509 s at tn.png
PBB GE RTN4 210968 s at tn.png
PBB GE RTN4 214629 x at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 57142 68585
Ensembl ENSG00000115310 ENSMUSG00000020458
UniProt Q9NQC3 Q99P72
RefSeq (mRNA) NM_007008.2 NM_024226
RefSeq (protein) NP_008939.1 NP_077188
Location (UCSC) Chr 2:
55.2 – 55.34 Mb
Chr 11:
29.59 – 29.64 Mb
PubMed search [1] [2]

一次構造とドメイン構造

図1 Nogoタンパク質の一次構造

 Nogo-Aタンパク質は、1163アミノ酸で構成されるタンパク質である。Nogoタンパク質の一次構造は、RTN4遺伝子によりコードされる二回膜貫通型のタンパク質である(図1)。RTN4遺伝子からは、3つのアイソフォームNogo-A,Nogo-B,Nogo-Cが作られる[1]

 軸索伸展阻害作用を持つNogo-66はNogo-A,-B,-Cに共通の66個のアミノ酸からなるドメインである。一方、もう一つの軸索伸展阻害作用を持つΔ20ドメインは、Nogo-Aのみが持つことが分かっている。Δ20ドメインが重要と考えているグループとNogo-66が重要と考えているグループに分かれているが、一般的に、Nogoの作用を指すのは、Nogo-66の作用である場合が多い。

 Nogo-Aは二回膜貫通型で、図2で示されるように、アミノ末端部は細胞外に露出していると考えられている。また、アミノ末端側の膜貫通ドメインは二回膜貫通できるのに十分長いと考えられている。   

発現様式

 Nogo(RTN4)遺伝子は成体脳・脊髄の比較的広範な希突起膠細胞と神経細胞への発現が認められるが、タンパク質の発現は固定方法によって結果が異なるとされ、パラホルムアルデヒド固定によっては、希突起膠細胞により高い発現があると報告されている[2]。発生時期には、DCX陽性の新生神経細胞に比較的限局したタンパク質と遺伝子発現が認められる[2][3]。 一方、生後および成体脳・脊髄においては主として稀突起膠細胞そして、神経細胞に発現が認められる[2]。希突起膠細胞内では、ミエリン自体における発現はなく、細胞体での発現が高い。なお、脳や脊髄への損傷によっては発現の変化は認められない[2]

 細胞内では、他のreticulonファミリータンパク質と同様に、小胞体もしくは図2に示されるように細胞表面に発現していると考えられている。また、タンパク質はシナプス前部後部の両方に発現しており、シナプス可塑性を担っている可能性が示唆されている[4]

タンパク質の機能

図2 Nogoとそのシグナル伝達経路

成体神経細胞に対する軸索伸展阻害作用

ミエリン由来軸索伸展阻害分子の作用とは

 神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかという仮説が提唱されていた。ミエリンが神経突起の伸展を抑制することが報告されたことから、ミエリンの中に再生を阻害している分子が存在していると考えられた。そして、Schwabらにより、ミエリンの各フラクションに対する抗体が作成され、IN-1抗体が発見された[5]。IN-1はミエリンの作用を打ち消し、また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められることが報告された。その後、3つのグループによりIN-1抗体の認識するペプチド配列をもとに、目的のタンパク質がクローニングされ、Nogoと名付けられた [6][7][8]

受容体と細胞内シグナル

 StrittmatterらはNogo-66の受容体、Nogo受容体NgRを同定した[9]。 Nogo受容体は細胞内ドメインをもたないGPIアンカー型タンパク質であり、Nogo-66に対し高親和性を示す。更に、神経栄養因子の受容体であるp75受容体がシグナル伝達を担う受容体であることが証明された[10]。p75とNogo受容体は結合して受容体複合となっている[11](図2左側)。細胞内へのシグナルはRho-GDIからRhoが解離されることによって開始される[12]。活性化されたRho/ROCK経路を介して、軸索や成長円錐の細胞骨格が制御され、軸索伸張阻害や成長円錐虚脱が起こる。 

 だが、p75/Nogo受容体のみでは、ある種の細胞ではNogoで刺激してもRhoが活性化しない。そこでLingo-1がp75/Nogo受容体コンポーネントとして重要と報告され、p75/Nogo受容体/Lingo-1という受容体複合によりRhoが活性化されて、軸索伸展が阻止されるという基本モデルが完成した(図2左側)[13]

 近年、paired immunoglobulin-like receptor B(PirB)が、Nogo-66に対するもう一つの受容体であることが報告された(図2右側)。PirBとNgRの両方を阻害することにより、ミエリンやNogo-66の軸索伸展阻害作用は、ほぼ完全に消失する[14]。また最近、このNogo受容体に対する内因性の不活性化因子として、LOTUSが同定されている[15]

ミエリン由来軸索伸展阻害因子のin vivoにおける作用

 当初、IN-1抗体や、NEP1-40という阻害ペプチドを用いて、脊髄損傷モデル動物軸索再生が促進されると報告され、Nogoはin vivoで再生阻害タンパク質として働くと考えられていた。しかし、Nogoのノックアウトマウスを3つのグループが独自に作成し、脊髄損傷後の軸索再生を評価したが、グループ間で結果が異なった[16][17][18]。また、最近になり、主要な再生阻害因子(MAG,Nogo,OMgp)のトリプルノックアウトマウスにおいても脊髄損傷モデルが作成されたが、再生の促進が認められないと報告された[19]。これらの結果については様々な議論がなされている。

その他の機能

Nogoの生理的な機能も解析されている。その中では

が報告されている。明確な証明はないが、ミエリンや、ミエリン由来の軸索伸展阻害因子は、軸索の余計な芽生えや分枝が起こることを防ぐことにより、適切な神経回路を維持するのに役立っているのではないかという考えが提唱されている[1]


参考文献

  1. 1.0 1.1 Martin E Schwab

    Functions of Nogo proteins and their receptors in the nervous system.
    Nat. Rev. Neurosci.: 2010, 11(12);799-811 [PubMed:21045861] [WorldCat.org] [DOI]

  2. 2.0 2.1 2.2 2.3 Andrea B Huber, Oliver Weinmann, Christian Brösamle, Thomas Oertle, Martin E Schwab

    Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions.
    J. Neurosci.: 2002, 22(9);3553-67 [PubMed:11978832] [WorldCat.org] [DOI]

  3. Carole Mathis, Aileen Schröter, Michaela Thallmair, Martin E Schwab

    Nogo-a regulates neural precursor migration in the embryonic mouse cortex.
    Cereb. Cortex: 2010, 20(10);2380-90 [PubMed:20093372] [WorldCat.org] [DOI]

  4. Hakjoo Lee, Stephen J Raiker, Karthik Venkatesh, Rebecca Geary, Laurie A Robak, Yu Zhang, Hermes H Yeh, Peter Shrager, Roman J Giger

    Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength.
    J. Neurosci.: 2008, 28(11);2753-65 [PubMed:18337405] [WorldCat.org] [DOI]

  5. L Schnell, M E Schwab

    Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors.
    Nature: 1990, 343(6255);269-72 [PubMed:2300171] [WorldCat.org] [DOI]

  6. M S Chen, A B Huber, M E van der Haar, M Frank, L Schnell, A A Spillmann, F Christ, M E Schwab

    Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1.
    Nature: 2000, 403(6768);434-9 [PubMed:10667796] [WorldCat.org] [DOI]

  7. T GrandPré, F Nakamura, T Vartanian, S M Strittmatter

    Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein.
    Nature: 2000, 403(6768);439-44 [PubMed:10667797] [WorldCat.org] [DOI]

  8. R Prinjha, S E Moore, M Vinson, S Blake, R Morrow, G Christie, D Michalovich, D L Simmons, F S Walsh

    Inhibitor of neurite outgrowth in humans.
    Nature: 2000, 403(6768);383-4 [PubMed:10667780] [WorldCat.org] [DOI]

  9. A E Fournier, T GrandPre, S M Strittmatter

    Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration.
    Nature: 2001, 409(6818);341-6 [PubMed:11201742] [WorldCat.org] [DOI]

  10. Toshihide Yamashita, Haruhisa Higuchi, Masaya Tohyama

    The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho.
    J. Cell Biol.: 2002, 157(4);565-70 [PubMed:12011108] [WorldCat.org] [DOI]

  11. Kevin C Wang, Jieun A Kim, Rajeev Sivasankaran, Rosalind Segal, Zhigang He

    P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp.
    Nature: 2002, 420(6911);74-8 [PubMed:12422217] [WorldCat.org] [DOI]

  12. Toshihide Yamashita, Masaya Tohyama

    The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI.
    Nat. Neurosci.: 2003, 6(5);461-7 [PubMed:12692556] [WorldCat.org] [DOI]

  13. Sha Mi, Xinhua Lee, Zhaohui Shao, Greg Thill, Benxiu Ji, Jane Relton, Melissa Levesque, Norm Allaire, Steve Perrin, Bryan Sands, Thomas Crowell, Richard L Cate, John M McCoy, R Blake Pepinsky

    LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex.
    Nat. Neurosci.: 2004, 7(3);221-8 [PubMed:14966521] [WorldCat.org] [DOI]

  14. Jasvinder K Atwal, Julie Pinkston-Gosse, Josh Syken, Scott Stawicki, Yan Wu, Carla Shatz, Marc Tessier-Lavigne

    PirB is a functional receptor for myelin inhibitors of axonal regeneration.
    Science: 2008, 322(5903);967-70 [PubMed:18988857] [WorldCat.org] [DOI]

  15. Yasufumi Sato, Masumi Iketani, Yuji Kurihara, Megumi Yamaguchi, Naoya Yamashita, Fumio Nakamura, Yuko Arie, Takahiko Kawasaki, Tatsumi Hirata, Takaya Abe, Hiroshi Kiyonari, Stephen M Strittmatter, Yoshio Goshima, Kohtaro Takei

    Cartilage acidic protein-1B (LOTUS), an endogenous Nogo receptor antagonist for axon tract formation.
    Science: 2011, 333(6043);769-73 [PubMed:21817055] [WorldCat.org] [DOI]

  16. Ji Eun Kim, Shuxin Li, Tadzia GrandPré, Dike Qiu, Stephen M Strittmatter

    Axon regeneration in young adult mice lacking Nogo-A/B.
    Neuron: 2003, 38(2);187-99 [PubMed:12718854] [WorldCat.org]

  17. Marjo Simonen, Vera Pedersen, Oliver Weinmann, Lisa Schnell, Armin Buss, Birgit Ledermann, Franziska Christ, Gilles Sansig, Herman van der Putten, Martin E Schwab

    Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury.
    Neuron: 2003, 38(2);201-11 [PubMed:12718855] [WorldCat.org]

  18. Binhai Zheng, Carole Ho, Shuxin Li, Hans Keirstead, Oswald Steward, Marc Tessier-Lavigne

    Lack of enhanced spinal regeneration in Nogo-deficient mice.
    Neuron: 2003, 38(2);213-24 [PubMed:12718856] [WorldCat.org]

  19. Jae K Lee, Cédric G Geoffroy, Andrea F Chan, Kristine E Tolentino, Michael J Crawford, Marisa A Leal, Brian Kang, Binhai Zheng

    Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice.
    Neuron: 2010, 66(5);663-70 [PubMed:20547125] [WorldCat.org] [DOI]