16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
英語名:Hodgkin-Huxley Equations | 英語名:Hodgkin-Huxley Equations | ||
[[wikipedia:ja:アラン・ロイド・ホジキン|Alan Lloyd Hodgkin]]と[[wikipedia:ja:アンドリュー・フィールディング・ハクスリー|Andrew Fielding Huxley]]は[[wikipedia:ja:イカ|イカ]]の[[巨大軸索]]の[[活動電位]]を、[[ナトリウムチャネル|Na<sup>+</sup>チャネル]]、[[カリウムチャネル|K<sup>+</sup>チャネル]]の開閉を実験的に測定し、開閉の非線形な動態を微分方程式としてあらわす事に成功した。これをHodgkin-Huxley方程式という。比較的少ない数のパラメータで神経[[軸索]]の[[活動電位]]の発生と伝播を示す事に成功した。チャネルの開閉特性を比較的少ないパラメータでかなり正確に表すことができる点で、今でも高く評価されている。現在広く行われている[[興奮性細胞]]([[神経細胞]]、[[wikipedia:ja:心筋|心筋細胞]]、[[wikipedia:ja:骨格筋|骨格筋]])の電位シミュレーションでは、通常、HHモデルもしくはそれに類似のモデルが用いられる。 | |||
Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917-2012) | ==Hodgkin-Huxley方程式とは== | ||
Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917-2012)は、ともに[[wikipedia:ja:イギリス|イギリス]]の電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出すとともに、興奮性細胞(神経細胞、心筋細胞、骨格筋細胞)の電気現象を定量的に扱う道を開いた<ref><pubmed> 12991237 </pubmed></ref><ref>Journal of Physiologyは、Hodgkin & Huxley (1952)論文の60周年を記念して、2012年5月にオンライン版の特別号を出版している。Hogkin & Huxleyおよび関係する論文は、このサイトからリンクされている。</ref> 。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者の[[wikipedia:ja:ジョン・C・エックルス|John Carew Eccles]]と3人で、1963年の[[wikipedia:ja:ノーベル医学・生理学賞|ノーベル医学・生理学賞]]を受賞している。 | |||
HodgkinとHuxleyの業績の意義は次のように要約できる。 | HodgkinとHuxleyの業績の意義は次のように要約できる。 | ||
# | #活動電位発生時に、[[wikipedia:ja:ナトリウム|ナトリウム]]イオン(Na<sup>+</sup>)と[[wikipedia:ja:カリウム|カリウム]]イオン(K<sup>+</sup>)が、[[脱分極]]により開く[[細胞膜]]の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。なお当時の論文では、イオンチャネル・チャネルという用語は用いられておらず、[[wikipedia:ja:コンダクタンス|コンダクタンス]]という用語が使用されている。 | ||
#Na<sup>+</sup>チャネル、K<sup>+</sup> | #Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルの開閉を実験的に測定し、開閉の[[wikipedia:ja:非線形|非線形]]な動態を[[wikipedia:ja:微分方程式|微分方程式]]を含む数式で表した。これらの式はまとめてHodgkin-Huxley (HH)方程式と呼ばれる。 | ||
#Na<sup>+</sup>チャネル、K<sup>+</sup> | #Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよび[[leakチャネル]]を示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | ||
== ''m''<sup>3</sup>''h''と''n''<sup>4</sup> == | == ''m''<sup>3</sup>''h''と''n''<sup>4</sup> == | ||
HodgkinとHuxleyは、[[#.E9.9B.BB.E4.BD.8D.E5.9B.BA.E5.AE.9A.E6.B3.95:_.E5.9F.BA.E7.A4.8E.E3.81.A8.E3.81.AA.E3.81.A3.E3.81.9F.E6.8A.80.E8.A1.93|電位固定法]](voltage-clamp)を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup> | HodgkinとHuxleyは、[[#.E9.9B.BB.E4.BD.8D.E5.9B.BA.E5.AE.9A.E6.B3.95:_.E5.9F.BA.E7.A4.8E.E3.81.A8.E3.81.AA.E3.81.A3.E3.81.9F.E6.8A.80.E8.A1.93|電位固定法]](voltage-clamp)を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup>のコンダクタンス(通りやすさ、[[wikipedia:ja:抵抗|抵抗]]の逆数)の変化を定量的に解析し、Na<sup>+</sup>とK<sup>+</sup>には別々の通り道があることを示した。そしてNa<sup>+</sup>とK<sup>+</sup>のコンダクタンスが[[wikipedia:ja:電位|電位]]に依存的な[[ゲート]](gate)により開閉されると考えた。 | ||
*Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。 | *Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。 | ||
20行目: | 22行目: | ||
''m''、''h''、''n''は、ゲートが開いている割合を示し時間的に変化する変数であり、単純な[[#Two-state_model:_.E5.9F.BA.E7.A4.8E.E7.9A.84.E3.81.AA.E8.80.83.E3.81.88.E6.96.B9|Two-stateモデル]]に従うと仮定されている。''m''と''n''は、静止時に閉じており(すなわち0の値をとる)、脱分極した時に開く(すべてが開けば1となる)。一方、''h''は静止時に開いており脱分極時に閉じる。''m''と''n''ではなく、''m''<sup>3</sup>および''n''<sup>4</sup>としたのは、主に電流の立ち上がりの形をよく再現するためである。 | ''m''、''h''、''n''は、ゲートが開いている割合を示し時間的に変化する変数であり、単純な[[#Two-state_model:_.E5.9F.BA.E7.A4.8E.E7.9A.84.E3.81.AA.E8.80.83.E3.81.88.E6.96.B9|Two-stateモデル]]に従うと仮定されている。''m''と''n''は、静止時に閉じており(すなわち0の値をとる)、脱分極した時に開く(すべてが開けば1となる)。一方、''h''は静止時に開いており脱分極時に閉じる。''m''と''n''ではなく、''m''<sup>3</sup>および''n''<sup>4</sup>としたのは、主に電流の立ち上がりの形をよく再現するためである。 | ||
[[wikipedia:ja:電流|電流]]はコンダクタンスと電圧に比例する(''I'' = ''GV''; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない(v-E<sub>X</sub>)。 従って、 Na<sup>+</sup>とK<sup>+</sup>により担われる電流''I''<sub>Na</sub>と''I''<sub>K</sub>は、Na<sup>+</sup>とK<sup>+</sup>の最大コンダクタンスをそれぞれ ''G''<sup>max</sup><sub>Na</sub>、''G''<sup>max</sup><sub>K</sub> 、平衡電位を''E''<sub>Na</sub>、''E''<sub>K</sub>とすると、 | |||
::<math>I_{Na} = G^{max}_{Na} m^3 h (v-E_{Na})\, </math> | ::<math>I_{Na} = G^{max}_{Na} m^3 h (v-E_{Na})\, </math> | ||
::<math>I_{K} = G^{max}_{K} n^3 (v-E_{K})\, </math> | ::<math>I_{K} = G^{max}_{K} n^3 (v-E_{K})\, </math> | ||
という式で表される。また主に[[wikipedia:ja:塩化物|クロライド]]イオン(Cl<sup>-</sup>)を通し静止電位保持に主要な役割を果たすリーク(leak)チャネルは、開閉が電位に依存しないとして、 | |||
::<math>I_{leak} = G_{leak}(v-E_{leak})\, </math> | ::<math>I_{leak} = G_{leak}(v-E_{leak})\, </math> | ||
52行目: | 54行目: | ||
---- | ---- | ||
細胞を[[wikipedia:ja:コンデンサ|キャパシタ]]([[wikipedia:ja:コンデンサ|コンデンサ]])と考える。細胞外液の電位を0とする。細胞膜の電位を''v''、蓄えられる電荷を''Q''、[[wikipedia:ja:静電容量|静電容量]](capacitance)をCとすると、 | |||
::<math>Q = Cv\, </math> | ::<math>Q = Cv\, </math> | ||
82行目: | 84行目: | ||
== 電位固定法: 基礎となった技術 == | == 電位固定法: 基礎となった技術 == | ||
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究はかなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、単純ではない。そこでHodgkinとHuxleyは、 voltage clamp(電位固定法)を用いて、コンダクタンスの変化を測定して解析した。 voltage | Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究はかなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、単純ではない。そこでHodgkinとHuxleyは、 voltage clamp(電位固定法)を用いて、コンダクタンスの変化を測定して解析した。 voltage clampは1940年代に[[wikipedia:ja:アメリカ|アメリカ]]の生物物理学者[[wikipedia:ja:Kenneth Stewart Cole|Kenneth Cole]] (1900 - 1984)らにより開発された。 | ||
以下は数式的な説明。 | 以下は数式的な説明。 | ||
102行目: | 104行目: | ||
::<math>I_{clamp} = G_A (v - E_A)\, </math> | ::<math>I_{clamp} = G_A (v - E_A)\, </math> | ||
となる。これは[[wikipedia:ja:オームの法則|Ohmの法則]]である。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、 | |||
::<math>G_{A} = \frac{I_{clamp}}{v-E_A}\, </math> | ::<math>G_{A} = \frac{I_{clamp}}{v-E_A}\, </math> | ||
112行目: | 114行目: | ||
OpenとClosedの2つの状態がある系で、他の状態に移る率が一定の場合、次の性質がある。<br> | OpenとClosedの2つの状態がある系で、他の状態に移る率が一定の場合、次の性質がある。<br> | ||
* | *[[wikipedia:ja:指数関数|指数関数]]的に変化し、一定の値に近づいていく。 | ||
*近づく値、変化の速さは、初期条件に依存しない。<br> | *近づく値、変化の速さは、初期条件に依存しない。<br> | ||