「Förster共鳴エネルギー移動」の版間の差分

ナビゲーションに移動 検索に移動
90行目: 90行目:
 蛍光寿命の変化を測定する方法は3つある。
 蛍光寿命の変化を測定する方法は3つある。


===Time domain===
====時間ドメイン====
 Time domainについては、近年、データ処理速度の向上により、メガヘルツオーダーのパルス励起光によって励起された一つ一つの光子を、迅速に検出する[[wikipedia:ja:時間相関単一光子計数法|時間相関単一光子計数法]]が発展してきた。励起光によって発生した一つ一つの光子が検出器まで届くまでの時間(数nsec)の確率分布が減衰曲線を形成するため、時間を横軸としてヒストグラムを作製することができる。Double exponetial fittingによって、FRETの起きている割合が算出できる。
 励起光によって発生した一つ一つの光子が検出器まで届くまでの時間(数nsec)を計測することで時定数τを計算する。時間を横軸としてヒストグラムを作製することができる。通常蛍光寿命は指数関数に従い減衰していく。FRETを起こしている分子と起こしていない分子が共存する時には二重指数関数になるため、二重指数関数にfittingすることによって、FRETの起きている分子の割合が算出できる。また、得られる光子の数が少ない時には二重指数関数fittingは不正確になりやすい為、単に平均蛍光寿命を計算するだけで済ませる場合も有る。単一指数関数の場合は、平均蛍光寿命はτに等しくなる。


 取得した蛍光を理論上全てデータに反映させることができるが、実際には、time domainにおいて、光子取得後、再び光子を取得する状態に戻るハードウェアのリセット時間(dead time)などがあり全ての光子を取得するには、改善の余地がある。また、秒単位の経時変化を追うためには、64X64ピクセルで画像取得されているのが現状で有り、多数のピクセルから蛍光寿命を取得するためには、処理速度の速いハードウェアが必要となる。さらに、短時間で画像を取得するためには、明るいサンプルであったほうがよい。
 取得した蛍光を理論上全てデータに反映させることができるが、実際には、光子取得後、再び光子を取得する状態に戻るハードウェアのリセット時間(dead time)などがあり全ての光子を取得するには、改善の余地がある。また、秒単位の経時変化を追うためには、低解像度で画像取得されているのが現状で有り、多数のピクセルから蛍光寿命を取得するためには、処理速度の速いハードウェアが必要となる。さらに、短時間で画像を取得するためには、明るいサンプルであったほうがよい。


[[Image:FRET-図4.jpg|thumb|right|300px|<b>図4:海馬スライスCA1錐体細胞に発現させたGFPのFLIMイメージおよび減衰曲線</b><br>(横軸は時間、縦軸は光子数)をBecker&Hickl社software、SPC imageにて取得した。実際には、20秒で数千個オーダーの光子を取得する。これらの光子の発生確率分布が減衰曲線を形成し、近似曲線をフィッティングさせることで蛍光寿命を取得する。]]  
 光源にはパルスレーザーを用いる。神経系の研究によく用いられるに光子顕微鏡に後付けする事も可能である。
 
[[Image:FRET-図4.jpg|thumb|right|300px|<b>図4:海馬スライスCA1錐体細胞に発現させたGFPのFLIMイメージおよび減衰曲線</b><br>(横軸は時間、縦軸は光子数)をBecker&Hickl社software、SPC imageにて取得した。実際には、20秒で数千個オーダーの光子を取得する。これらの光子の発生確率分布が減衰曲線を形成し、近似曲線をフィッティングさせることで蛍光寿命を取得する。]]


===Frequency domain===
===Frequency domain===

案内メニュー