「グリア細胞」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
23行目: 23行目:


==アストロサイトの形態==
==アストロサイトの形態==
=== 名称と形態の特徴 ===
=== 名称と形態の特徴 ===
日本語では星状膠細胞と訳されている。その名はミカエル・レンホサックにより「星のような」細胞という意味で命名されて、現在に至っている。発見当初の細胞染色法ではこの細胞の骨格部分のみを染色していたために星のように見えたのだ。前述のようにアストロサイトが組織学的にニューロンとは異なった第二の脳細胞であることを正確に記載したのはカハール(1913)である。
  超高圧電子顕微鏡による三次元形態解析によりアストロサイトは多数の突起がさらに細かく分岐し、その先端をシート状に広げていることが明らかにされている<ref><pubmed>15475683</pubmed></ref>。したがって、全体としては星状というよりスポンジ状であり、大きな表面積を持つ細胞である(図2)。しかし、脳内でアストロサイトが占める空間の大きさは絶対数のみではなく一つのアストロサイトのサイズとその突起の広がりにも依存する。ラットのアストロサイトの直径は30から60&mu mであり、3~4本の突起を伸ばしている。その結果、一個のアストロサイトが占める空間は66000&mu m<sup>3</Sup>に及ぶ。それに対して、ヒトのアストロサイトの直径は100~200&mu mであり、その上、突起の数は40本を超えるので、その総体積はラットのアストロサイトの27倍にも及ぶ。ラットでは一個のアストロサイトに約9万個のシナプスが被われていると推定されている。これをヒトのアストロサイトに当てはめると、一個あたり、200万個以上のシナプスを被っていることになる<ref><pubmed>12815249</pubmed></ref>。
===同種の細胞===
アストロサイトの同種と考えられる細胞は脳室[[上衣細胞]](ependemoglia)、小脳のバーグマン細胞(Bergmann glia)、網膜に分布するミューラー細胞(Muller cell)など多様である。しかし、これらの形は決して星の様な形はとっていない。
===アストロサイトのマーカー分子===
アストロサイトまたはその同類の細胞を同定するためのマーカータンパク質として、glial fibrillary acidic protein(GFAP)、vimentin、S-100βなど多様な分子が確認されている。これらは多くの同種細胞に発現する。しかし、どの分子もすべての種類のアストロサイトに対応するものではない。また、分布する部位や、発達時期、障害の有無によって発現の程度が異なり、まったく発現しない場合もあるので、同定には注意を要する。


 日本語では星状膠細胞と訳されている。その名はミカエル・レンホサックにより「星のような」細胞という意味で命名されて、現在に至っている。発見当初の細胞染色法ではこの細胞の骨格部分のみを染色していたために星のように見えたのだ。前述のようにアストロサイトが組織学的にニューロンとは異なった第二の脳細胞であることを正確に記載したのはカハール(1913)である。
===ヒト脳における分布量===
   
   
 超高圧電子顕微鏡による三次元形態解析によりアストロサイトは多数の突起がさらに細かく分岐し、その先端をシート状に広げていることが明らかにされている<ref><pubmed>15475683</pubmed></ref>。したがって、全体としては星状というよりスポンジ状であり、大きな表面積を持つ細胞である(図2)。
ヒトの大脳皮質においてはニューロンの1.4倍ほど分布していると推定されている。これはラットやマウスの5倍に及ぶとされている<ref><pubmed>14522144</pubmed></ref>。しかし、高次機能におけるアストロサイトの重要性を主張するにはあまりインパクトのない分布量の差である。しかし、この数よりも上述のようなアストロサイトの大きさや空間的広がりに注目すべきべきであろう。ラットのアストロサイトより27倍も大きな空間を占め、200万個以上のシナプスを被うアストロサイトが5倍も存在するという事実は脳機能の進化との関連性を強く示唆すると考えることに異論はないだろう。アインシュタイン(Albert Einstein)の脳ではニューロンに対するアストロサイトの量が多かったという報告もあり<ref><pubmed>3979509</pubmed></ref>、アストロサイトが単なる支持細胞としてだけではなく、脳の機能の高度化にも関わっている可能性も考えられるようになっている。
 
 
==アストロサイトの機能==
 
アストロサイトは脳機能の維持や保全のために多様な機能を発揮しており、脳機能発揮のための縁の下の力持ちとしてその存在意義は認められていた。しかし、20世紀末から脳における多様な機能が注目されるようになってきている。
 
===脳の機能的構造維持===
前述のようにアストロサイトは沢山の突起を伸ばし、その先端をシート状にひろげ、まるでスポンジのような形をしている。脳の灰白質の中では一つのアストロサイトは突起の先端部分で他のアストロサイトとわずかに重なり合う程度である。一方、アストロサイトの一端は血管に接触している。したがって、アストロサイトと血管の間に一定の三次元空間が造り出される(図3)<ref><pubmed>14522144</pubmed></ref>。したがって、ニューロンのネットワークはアストロサイトが造り出す網目状の空間に配置されていることになる。実際にニューロンが造るシナプスをアストロサイトの先端突起部(ラメラ:lamella)が覆っており、互いに緊密な機能的相関があることを示している。
 
===細胞外イオン環境の調節===
 シナプス周辺に高密度に広がるアストロサイトの先端突起はニューロン活動に伴う細胞外イオン環境の変化の恒常性に重要な役割を持つ。ニューロンの活動、すなわち脱分極はニューロン内にNa+とCa2+を流入させ、細胞外にK+を流出させる。細胞外のK+が上昇はニューロン内外のイオン勾配を小さくしてしまうので、活動電位の発生に支障を来す。アストロサイトには多様なイオンポンプやイオンチャンネル(K+チャンネル、Na+/H+アンチポーター、Na+/K+/Cl-トランスポーター、Cl-チャンネル、水チャンネルなど)が分布しており、ニューロン活動に伴って生ずる細胞外液のイオン濃度の変化を調節し、恒常性を保っている。


===同種の細胞===
===血液-脳関門===
脳の細動脈はアストロサイトの先端で覆われており、血管上皮細胞は互いに緊密に繋ぎ合わされている。ニューロンは血管とは直接接触していないので、血液と脳実質間の物質の受け渡しは血管壁とアストロサイト膜を介して行わなければならない。実際にこのままでは小さなイオンさえも通すことはできない。必要な分子は血管上皮とアストロサイトに発現した次のような特殊なトランスポーを介して行われる。この仕組みが、脳内への有害物質の浸入を防ぎ、必要な分子を選択的に通過させる血液―脳関門である。
1)グルコーストランスポーター(GLUT1)
2)多様なアミノ酸トランスポーター
3)エネルギー依存性アデニンヌクレオチド結合(adenine-nucleotide binding casset(ABC)トランスポーター
4)各種のイオン交換システム(Na+/H+,Na+/K+,Cl-/HCO3-)


 アストロサイトの同種と考えられる細胞は脳室[[上衣細胞]](ependemoglia)、小脳のバーグマン細胞(Bergmann glia)、網膜に分布するミューラー細胞(Muller cell)など多様である。しかし、これらの形は決して星の様な形はとっていない。
===神経伝達物質の取り込み===
神経信号の伝達の際にシナプス周辺には神経伝達物質が大量に放出される。放出された伝達物質は早急にこの場所から取り除かないと、シナプス部位における伝達効率が低下する。伝達物質の急速な除去のために、神経系は、1)酵素による分解、または、2)特殊な伝達物質トランスポーターによる周辺細胞への取り込みの方法を使っている。この内、アセチルコリンやATP以外の神経伝達物質の除去には後者が使われている。神経終末やニューロン自体にも伝達物質トランスポーは発現しているが、アストロサイトには多様な神経伝達物質取り込みに関わるトランスポーターが分布している(表1)。中枢神経系の約70%シナプスにおいて興奮性神経伝達物質して機能しているグルタミン酸については、EAAT1~EAAT5間での5種類のトランスポーターが同定されているが、アストロサイトにはEAAT1とEAAT2の二種類が発現しており、主なグルタミン酸取り込み経路となっている。


===アストロサイトのマーカー分子===
===グリア細胞が合成し遊離する分子===
グリア細胞はニューロトロフィン類(Nerve growth factor:NGF, Brain-derived neurotropic factor:BDNF, Neurotrophin 3, 4: NT3, NT4)やNeuropeptide Y(NPY)、Opioidペプチドなど多様なポリペプチドを合成し、遊離する。それらはニューロンに働きかけて、樹状突起の成長や軸索の伸張、神経回路の修復などに広範囲に脳機能の維持に寄与している。


 アストロサイトまたはその同類の細胞を同定するためのマーカータンパク質として、glial fibrillary acidic protein(GFAP)、vimentin、S-100βなど多様な分子が確認されている。これらは多くの同種細胞に発現する。しかし、どの分子もすべての種類のアストロサイトに対応するものではない。また、分布する部位や、発達時期、障害の有無によって発現の程度が異なり、まったく発現しない場合もあるので、同定には注意を要する。
===アストロサイトが関与するエネルギー供給機構===
ニューロンにとって唯一のエネルギー源はグルコース(glucose)である。そのグルコースは4.2に述べたグルコーストランスポーター(glucose transporter )を使って、ニューロンにエネルギー源としてのグルコースを供給している。一部は、血管の外に流れ出したグルコースをニューロンが取り込む方式を使っているようだが、基本的にはアストロサイトを介した経路を主な補給路としている。実は、アストロサイトは取り込んだグルコースを乳酸(lactate)まで代謝してから、モノカルボン酸トランスポーター(mono-carboxylic acid transporter :MCT) を介してニューロンへ供給されるのだ<ref><pubmed>15953344</pubmed></ref>(図4)。アストロサイトが自らに必要なエネルギーを得るために必要な仕組みなのか、ニューロンが必要に応じてすぐにTCAサイクルでエネルギーを産生できるための仕組みなのかは不明であるが、両者が密接な関係を持っていることがわかる。しかし、これはアストロサイトの支持細胞としての役割の一つであり、脳機能を制御していると構えるほどの事実ではない。
 さらに重要なことは、細動脈周辺のアストロサイトの細胞内カルシウム濃度が高まると、細動脈の直径が広がり、血流量が高まるという事実である<ref><pubmed>3638986</pubmed></ref>。これはニューロン活動により遊離されたグルタミン酸により周辺のアストロサイトが刺激されると、血液の供給量が高まることを意味する。より多くのエネルギーを要求すると、それに応じて、血流量を増やし、グルコースの供給量を増やすことができるという何とも見事なしくみである。この事実から考えると、現在、脳活動の画像化に利用されている機能性核磁気共鳴イメージング(functional magnetic resonance imaging: fMRI)の画像はアストロサイトの機能を見ているものではないかと思われる。


===ヒト脳における分布量===
===アストロサイトにおける神経伝達物質受容体の発現===
20世紀末から現在までにアストロサイトの研究は急速に進んできている。もっぱら、ニューロンが正常に活動するための支持細胞としての機能のみが注目されていたアストロサイトであるが、1980年年代後半にはこの細胞にグルタミン酸受容体、GABA受容体、セロトニン受容体、ノルアドレナリン受容体など様々な神経伝達物質受容体が発現していることが報告されている。この頃から、分子生物学的に神経伝達物質受容体の存在を実証する方法が確立され、アストロサイトにはGタンパク質共役型受容体が分布していることが明らかにされた。現在ではプリン受容体、アセチルコリン受容体、ヒスタミン受容体、ドーパミン受容体の発現も確認されている。もちろん、すべてのアストロサイトに発現しているのではない。しかし、主要な神経伝達物質のほとんどがアストロサイトに発現する可能性があるのだ<ref><pubmed>3117429</pubmed></ref>。。


 ヒトの大脳皮質における分布量はニューロンの1.4倍と推定されている。この値も決して正確なものではないが、ラットやマウスと比較すると約5倍の量であるとされており<ref><pubmed>14522144</pubmed></ref>、その量と高次機能の関係が考えられるようになっている。天才科学者、アルバート・アインシュタインの脳ではニューロンに対するアストロサイトの比が有意に高かったという報告もあり、アストロサイトの脳の高次機能への関与が注目されるようになっている<ref><pubmed>3979509</pubmed></ref>
===アストロサイトにおける細胞内カルシウム濃度の変化===
 受容体の発現があったとしても、それが機能的に意味を持っているかどうかはわからず、多くの神経研究者は注目することなく時が過ぎた。というのも、アストロサイトは電気的にはまったく不活性であると報告されており、確かに、深い静止膜電位は持つものの、通電してもまったく応答することはない(<ref><pubmed>5966434</pubmed></ref>。電気生理学が脳研究の中心的な解析手法であった当時、こんな不活性な細胞が伝達物質受容体を発現していたとしても意味がないと考えられたのも不思議はない。
 ところがアストロサイトの活動を検出できる研究手法が開発されたことで、事情は一変する。カルシウムイメージング(calcium imaging)法、すなわち、細胞内カルシウム濃度の画像による解析方法である。細胞内に容易に導入することができる蛍光カルシウム指示薬を用い、カルシウム濃度の変動の結果生ずる蛍光強度の変動をビデオ画像として捉えるものである<ref><pubmed>2879588</pubmed></ref>。。この方法を使って、アストログリアのクローン細胞にセロトニンに対するカルシウム応答反応がることが報告された<ref><pubmed>3761750</pubmed></ref>。その後、中枢由来の培養細胞を用いて、グルタミン酸が細胞内カルシウム濃度上昇させることが報告された<ref><pubmed>1967852</pubmed></ref>、<ref><pubmed>12106244</pubmed></ref>。それに前後して、アセチルコリン、ヒスタミン、ATP、ノルアドレナリン、ドーパミン、セロトニンに対してもアストロサイトが同様なカルシウム応答反応を生ずることが報告されている。この反応は細胞の一点で見ると反復性律動的反応(カルシウムカルシウムオシレーション:calcium oscillation)として観察できる(図5)二次元的に観察すると、細胞内で反応が波状に広がるばかりか、周辺のアストロサイトにも波状に伝搬していることがわかる(カルシウムウエーブ: calcium wave)<ref><pubmed>1647876</pubmed></ref>(動画1)。その伝搬速度は神経活動に比べると数オーダー遅い。しかし、この発見はそれまで不活性であり、脳のダイナミックな機能には寄与しないだろうと考えられていたアストロサイトが脳機能発現に積極的関与する可能性を示唆する重要な発見である。


==アストロサイトの機能==
===アストロサイトによるグリア伝達物質の遊離===
 アストロサイトは脳機能の維持や保全のために多様な機能を発揮しており、脳機能を支える細胞群としてその存在意義は古くから認められている。
 アストロサイトがモノアミン刺激によってGABAやグルタミン酸を遊離できることは、カルシウム濃度上昇の発見以前に報告されていた<ref><pubmed>3005511</pubmed></ref>、ref><pubmed>2575232</pubmed></ref>。このような神経伝達物質遊離がカルシウムの上昇によって引き起されるのか。また、それによって周辺のニューロンに影響を与えることができるのか。これらの証拠があれば、ニューロンからアストロサイトへの情報伝達ばかりではなく、アストロサイトからニューロンへの逆行性情報伝達が証明できる。この点も比較的簡単にクリアされたのだ。アストロサイトにおけるカルシウム濃度上昇がグルタミン酸 、ATP、D-セリンなどの分子を遊離できること、これらの直接的にも間接的にもニューロンの活性に影響を与えることが証明されている(図6)<ref><pubmed>12927771</pubmed></ref>。
 グルタミン酸(glutamate)は脳内のシナプスの70%で興奮性伝達物質として使われている分子である。従って、これを遊離できることはアストロサイトから周辺のシナプスに情報を伝達できることを意味する。
 もう一つ重要な分子がATP (adenosine triphosphate)である。アストロサイトがATPを遊離できることはアストロサイト特異的培養系で、ATP測定をすることによって容易に証明できる。ATPはそのものが神経伝達物質の一つして認められており、ニューロンには7種のイオンチャンネル型のP2X受容体と8種のG-タンパク質共役型のP2Y型が分布していることが認められている。一方、アストロサイトにはイオンチャンネル型P2X受容体とG-タンパク質共役型のP2Y1、P2Y2、P2Y4を発現しているので、ATPに対する感受性が高く、カルシウムイメージング法でその効果を容易に確かめることができる<ref><pubmed>12420311</pubmed></ref>。
 さらに、もう一つ重要な物質の遊離がある。D-セリン(D-serine)である。D-セリンはL-セリンからセリン異性化酵素(serine racemase)によって合成される。このアミノ酸はグルタミン酸受容体のサブタイプの一つであるNMDA受容体(N-methyl-D-aspartic acid receptor)の活性化因子の一つである。このNMDA受容体はカルシウム流入を引き起こすことができるチャンネルに連動しており、シナプス可塑性過程での重要性が高い。アストロサイトはセリン異性化酵素をもっており、D-セリンを遊離することができる<ref><pubmed>9892700</pubmed></ref>。最近はニューロンもD-セリンを産生することができると報告されており、この機能がアストロサイトの特異的機能であることには疑問があるが<ref><pubmed>17663143</pubmed></ref>、グリア細胞から遊離されてニューロンのグルタミン酸受容体に促進的作用を受けもっていることは確からしい。このような分子はグリオトランスミッター(gliotransmitters)と呼ばれている<ref><pubmed>17006901</pubmed></ref>。


 =脳の機能的構造維持=
===トライパータイトシナプス===
 上述のようにアストロサイトはたくさんの突起がそれぞれ細かく分岐してその先端をシート状に伸ばしている。そのシート状の突起はシナプスの周囲を覆っている。計算によれば、一個のアストログリアは10万個以上のシナプスを覆っているという(文献)。この構造は神経回路の物理的支持のために重要であるが、ニューロンが放出した神経伝達物質の除去という主要な機能にも必須である。脳血管からニューロンへの栄養分の受け渡し、損傷部位の修復のためのサイトカインの遊離など多様な機能に関わっていることが知られている(図)(文献)。
 グリアとニューロンとがそれぞれ伝達物質受容体を発現し、ともに伝達物質を遊離できることから、脳機能が単にニューロンが作る回路のみではなく、グリア細胞とニューロンが作るもっと広範囲な回路の中から生み出されるのではないかという考え方が提唱されている。シナプス前ニューロンとシナプス後ニューロンとで作られるシナプスに、周辺のアストロサイトとの間でのシナプスの存在を加えたトライパータイトシナプス(tripartite synapse:三者間シナプス)という概念である<ref><pubmed>10322493</pubmed></ref>。これまでに述べたアストロサイトの性質を考えれば当然あって然るべき仕組みである。このようなシナプスの存在を考慮に入れて脳における情報処理を考えると、これまでにニューロンのみで作られる回路の上で考えていた脳機能はもっと複雑で奥深いものになる(図7)。


 そればかりではない。後述のように、アストログリアはニューロンが遊離する神経伝達物質に対する受容体を発現しており、ニューロンの活動に反応して、自らが伝達物質を遊離することでニューロ活動を調節していることが明らかにされてきた(文献)。これは脳科学研究上極めて重要な発見である。
===シナプス可塑性に及ぼすアストロサイトの役割===
 すでに述べたようにアストロサイトには細かく枝分かれし、シート状の突起(ラメラ:lamella)を持つ樹状突起と、血管に巻き付く突起があり、そのラメラはニューロンの樹状突起上のシナプス構造を包み込んでいる。この構造はアストロサイトがシナプスをサポートしていることを示唆している。 また、海馬スライス培養標本において、アストロサイトを緑色蛍光タンパク質(GFP)で、ニューロンをrhodamine-dextranで標識して、二光子顕微鏡でリアルタイム観察した結果、アストロサイトと接触したシナプスの寿命は接触しなかったシナプスに比較して有意に長く、成熟型のシナプスに移行していくことが証明されている<ref><pubmed>17215394</pubmed></ref>この事実はおそらくシナプス可塑性にはアストロサイトの存在が重要であることを示唆しており、ますますアストロサイトの重要性が高まっている。


 ヒトの脳においてはニューロンの2倍ほど分布していると推定されている。これはラットやマウスの5倍、ウマの2倍くらいである(文献)。アインシュタイン(Albert Einstein)の脳ではニューロンに対するアストロサイトの量が多かったという報告もあり(文献)、アストロサイトが単なる支持細胞としてだけではなく、脳の機能の高度化にも関わっている可能性も考えられるようになっている。


===オリゴデンドロサイト===
==オリゴデンドロサイト==
(oligodendrocyte; oligodendroglia):この名前はアストログリアに比べて突起が少ないことに基づいている(図)。日本語では「希突起神経膠細胞」と訳されている。この細胞は前述のようにカハールの弟子である、リオ・オルテガによって発見された(1928)、オルテガはこれらの細胞を第三の脳細胞として発表する。実は彼が第三の脳細胞と分類した中には後述のミクログリア(microglia)も含まれていたのだ。この発表は師であるカハールには受け入れられず、リオ・オルテガは破門の憂き目にあう。しかし、この細胞もアストロサイトとは異なった脳細胞である。ヒトの脳内にはアストロサイトの2倍以上の量が存在し、伝導速度の高速化に寄与し、[[脳神経]]回路における高速情報処理を可能にする重要な細胞である。
(oligodendrocyte; oligodendroglia):この名前はアストログリアに比べて突起が少ないことに基づいている(図)。日本語では「希突起神経膠細胞」と訳されている。この細胞は前述のようにカハールの弟子である、リオ・オルテガによって発見された(1928)、オルテガはこれらの細胞を第三の脳細胞として発表する。実は彼が第三の脳細胞と分類した中には後述のミクログリア(microglia)も含まれていたのだ。この発表は師であるカハールには受け入れられず、リオ・オルテガは破門の憂き目にあう。しかし、この細胞もアストロサイトとは異なった脳細胞である。ヒトの脳内にはアストロサイトの2倍以上の量が存在し、伝導速度の高速化に寄与し、[[脳神経]]回路における高速情報処理を可能にする重要な細胞である。


34

回編集

案内メニュー