「Förster共鳴エネルギー移動」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:
英:[[Förster]] resonance energy transfer 英略称:FRET 独:Förster-Resonanzenergietransfer 仏:transfert d'énergie entre molécules fluorescentes   
英:[[Förster]] resonance energy transfer 英略称:FRET 独:Förster-Resonanzenergietransfer 仏:transfert d'énergie entre molécules fluorescentes   


{{box|text=
{{box|text= 二つの蛍光分子がごく近接して存在する場合、一つの蛍光分子からもう一つの蛍光分子へ、エネルギーが移行する。これをFörster共鳴エネルギー移動(FRET)という<ref><pubmed>22352636</pubmed></ref>。FRETの効率は2つの蛍光体のスペクトルの重なりの大きさ、距離と角度により左右されるため、FRETを測定する事により蛍光分子間の空間配置を間接的に測定する事が可能である。これを利用して、タンパク質相互作用、生化学反応や細胞内シグナル伝達を可視化するFRETプローブの開発されてきた。特に近年のGFPならびにその類縁タンパク質の開発により遺伝的にコードされるFRETプローブが作成され、幅広く応用されている。}}
 2つの蛍光分子がごく近接して存在する場合、一つの蛍光分子からもう一つの蛍光分子へ、エネルギーが移行する。これをFörster共鳴エネルギー移動(FRET)という<ref><pubmed>22352636</pubmed></ref>。FRETの効率は2つの蛍光体のスペクトルの重なりの大きさ、距離と角度により左右される。特に、近年の緑色蛍光タンパク質(green fluorescent protein, GFP)とその色変異体や様々な蛍光スペクトルを持つ近縁のタンパク質の開発・同定により、FRETを用いて、生細胞の中の微小ドメインでのタンパク質相互作用、生化学反応や細胞内シグナル伝達の可視化が可能となった。脳神経研究においても、神経細胞、脳スライスなどの組織および個体レベルで応用されている。 }}
 
[[Image:FRET-図1.jpg|thumb|right|300px|<b>図1:蛍光体が蛍光を発する過程を示したヤブロンスキーダイヤグラム</b><br>青色で示した励起光によって、蛍光体の電子が励起状態に到達する。励起された電子は、回転および振動エネルギーを失いながら励起状態の最低準位に行き着く。この電子は緑色で示した蛍光を発して励起状態から基底状態に戻る。実際は、最低準位に行き着く前に基底状態に戻ることもあり、これが蛍光波長の幅に反映される。]]
 
[[Image:FRET-図2new.jpg|thumb|right|300px|<b>図2:励起光によって励起された電子が基底状態に戻る際の減衰曲線</b><br>緑の太い線がFRETが起きていない時の減衰曲線。FRETの速度定数が加わることにより速度定数が大きくなり細い緑の線のように減衰曲線の傾斜が大きくなる。]]
 
[[Image:FRET-図3.jpg|thumb|right|300px|<b>図3:ドナーの蛍光スペクトルとアクセプターの励起スペクトルに重なりがあるときに、FRETが起きる。黒破線で囲まれたスペクトルは、励起スペクトルを示す。緑色のタンパク質がドナー、赤色タンパク質がアクセプターを示す。</b>]]


[[Image:FRET-図1.jpg|thumb|right|300px|<b>図1. 蛍光体が蛍光を発する過程を示したヤブロンスキーダイヤグラム</b><br>青色で示した励起光によって、蛍光体の電子が励起状態に到達する。励起された電子は、回転および振動エネルギーを失いながら励起状態の最低準位に行き着く。この電子は緑色で示した蛍光を発して励起状態から基底状態に戻る。実際は、最低準位に行き着く前に基底状態に戻ることもあり、これが蛍光波長の幅に反映される。]]
[[Image:FRET-図3.jpg|thumb|right|300px|<b>図2. ドナーとアクセプターの励起、蛍光スペクトル</b><br>ドナーの蛍光スペクトルとアクセプターの励起スペクトルに重なりがあるときに、FRETが起きる。黒破線で囲まれたスペクトルは、励起スペクトルを示す。緑色のタンパク質がドナー、赤色タンパク質がアクセプターを示す。]]
==Förster共鳴エネルギー移動とは==
==Förster共鳴エネルギー移動とは==
 二つの蛍光分子がごく近接して存在する場合、一つの蛍光分子からもう一つの蛍光分子へ、エネルギーが移行する事が知られている。この現象は、1946年[[wikipedia:Theodor Förster|Theodor Förster]]によって報告されたことから、Förster共鳴エネルギー移動(FRET)という<ref>'''Förster, T.'''<br>Energiewanderung und Fluorescenz<br>''Naturwissenscaft''. 1946, 33:166–175</ref><ref><pubmed>22352636</pubmed></ref>。かつてはFRETは、fluorescence resonance energy transferの略称として用いたが、実際には蛍光を伴わないエネルギー移動であることから、現在ではFörster resonance energy transferと呼ぶ事がIUPACにより推奨されている。
 二つの蛍光分子がごく近接して存在する場合、一つの蛍光分子からもう一つの蛍光分子へ、エネルギーが移行する事が知られている。この現象は、1946年[[w:Theodor Förster|Theodor Förster]]によって報告されたことから、Förster共鳴エネルギー移動(FRET)という<ref>'''Förster, T.'''<br>Energiewanderung und Fluorescenz<br>''Naturwissenscaft''. 1946, 33:166–175</ref><ref><pubmed>22352636</pubmed></ref>。かつてFRETは、fluorescence resonance energy transferの略称として用いたが、実際には蛍光を伴わないエネルギー移動であることから、現在ではFörster resonance energy transferと呼ぶ事がIUPACにより推奨されている。


 かつては生細胞にてFRETを検出するのは、非常に煩雑であった。プローブとなるタンパク質を精製、化学的に色素でラベルし、細胞に導入するという操作が必要であり、生物学分野での応用はきわめて限定されたものであった。しかし、GFPとその変異体、類縁タンパク質の発見により今日においては様々な分野において、多くの蛍光タンパク質を基にした完全に遺伝子によってコードされるFRETプローブが使用されている。
 かつては生細胞にてFRETを検出するのは、非常に煩雑であった。プローブとなるタンパク質を精製、化学的に色素でラベルし、細胞に導入するという操作が必要であり、生物学分野での応用はきわめて限定されたものであった。しかし、GFPとその変異体、類縁タンパク質の発見により今日においては様々な分野において、多くの蛍光タンパク質を基にした、完全に遺伝子によってコードされるFRETプローブが使用されている。


==FRETの効率を決定する因子==
==FRETの効率を決定する因子==
49行目: 44行目:




 ''κ''はドナーとアクセプターの相互分子配向である。多くの場合、正確に求める事は困難であるため、しばしば''κ''<sup>2</sup> =2/3 と仮定される。この値は、両方の色素が自由に回転しており、励起状態寿命の間は等方的に配向していると考えられる場合に得られる。色素が固定されていたり自由に回転することができないような場合、''κ''<sup>2</sup> =2/3 とは仮定できない。''Q<sub>0</sub>''はアクセプターが無い場合のドナーの蛍光[[wj:量子収率|量子収率]]、''n''は媒体の[[屈折率]](水、25 °Cの場合、1.3342)、''N<sub>A</sub>''は[[アボガドロ数]]である。これらの定数を当てはめると、''κ''より前の部分は、8.786 x 10<sup>11</sup> mol L<sup>-1</sup> cm nm<sup>2</sup>となる<ref><pubmed> 10964438</pubmed>但しこの論文にはミスプリが有り、p. 439で''κ''<sup>2</sup> とすべき所を、''κ''としている。</ref>。
 ''κ''はドナーとアクセプターの相互分子配向である。多くの場合、正確に求める事は困難であるため、しばしば''κ''<sup>2</sup> =2/3 と仮定される。この値は、両方の色素が自由に回転しており、励起状態寿命の間は等方的に配向していると考えられる場合に得られる。色素が固定されている場合や自由に回転することができないような場合、''κ''<sup>2</sup> =2/3 とは仮定できない。''Q<sub>0</sub>''はアクセプターが無い場合のドナーの蛍光[[wj:量子収率|量子収率]]、''n''は媒体の[[屈折率]](水、25 °Cの場合、1.3342)、''N<sub>A</sub>''は[[アボガドロ数]]である。これらの定数を当てはめると、''κ''より前の部分は、8.786 x 10<sup>11</sup> mol L<sup>-1</sup> cm nm<sup>2</sup>となる<ref><pubmed> 10964438</pubmed>但しこの論文にはミスプリが有り、p. 439で''κ''<sup>2</sup> とすべき所を、''κ''としている。</ref>。


 ''R<sub>0</sub>''を用いると、FRET効率''E''は次のように表す事が出来る。
 ''R<sub>0</sub>''を用いると、FRET効率''E''は次のように表す事が出来る。
57行目: 52行目:




 これからいくつかの事が結論できる。
 Förster距離''R<sub>0</sub>''が大きいドナーとアクセプターの組み合わせの方が、FRET効率''E''は良い、別な言い方をすると、FRETが起こりやすい。''R<sub>0</sub>''が大きくするためには蛍光[[wj:量子収率|量子収率]]''Q<sub>0</sub>''がよいドナー、[[wj:モル吸光係数|モル吸光係数]]''&epsilon;<sub>A</sub>(&lambda;)''が良いアクセプター、またいずれも長波長域にあるドナーとアクセプターの組み合わせを選択すべきである。


 Förster距離''R<sub>0</sub>''が大きいドナーとアクセプターの組み合わせの方が、FRET効率''E''は良い、別な言い方をすると、ドナーとアクセプター間が離れていてもFRETが検出できる。そのためには蛍光量子収率''Q<sub>0</sub>''がよいドナー、モル吸光係数''&epsilon;<sub>A</sub>(&lambda;)''が良いアクセプター、またいずれも長波長域にあるドナーとアクセプターの組を選択する事で改善される。また、ドナーとアクセプターの蛍光スペクトルが変化しない状態では、ドナーとアクセプター間の距離と角度の変化をFRETの効率の変化として読み取る事が出来る。これを利用して、様々な細胞現象に対するプローブをデザインする事が可能である。
 ドナーとアクセプターの蛍光スペクトルが変化しない状態では、ドナーとアクセプター間の距離と角度の変化をFRETの効率の変化として読み取る事が出来る。これを利用して、様々な細胞現象に対するプローブをデザインする事が可能である。


==FRETの画像検出==
==FRETの画像検出==
 FRETが起こるとドナーの蛍光強度の減少、アクセプターの蛍光の増加、ドナー蛍光寿命の減少が観察される。液体サンプルであれば蛍光分光光度計を用いる事で検出する事が可能であるが、画像として取得する場合には観察したい対象の特性を考慮しつつ、方法を選択していく。
 FRETが起こるとドナーの蛍光強度の減少、アクセプターの蛍光の増加、ドナー蛍光寿命の減少が観察される。液体サンプルであれば[[wj:蛍光分光光度計|蛍光分光光度計]]を用いる事で検出する事が可能であるが、画像として取得する場合には観察したい対象の特性を考慮しつつ、方法を選択していく。


===蛍光強度比イメージング===
===蛍光強度比イメージング===
 ドナーおよびアクセプターの蛍光を取得し、ピクセルごとの蛍光強度比を計算する。FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。現在、最も広く使用されている手法である。タイムラプス解析も行える。
 ドナーおよびアクセプターの蛍光を取得し、ピクセルごとの蛍光強度比を計算する。FRETが起きると、ドナーの蛍光強度が減少し、アクセプターの蛍光強度が増加する。現在、最も広く使用されている手法である。[[タイムラプス解析]]も行える。


 ドナー蛍光強度は、FRET効率Eと次のような関係に有る。
 ドナー蛍光強度とFRET効率Eとは次のような関係に有る。




77行目: 72行目:
 データを取得、解釈する際に注意しなければいけないポイントがある。
 データを取得、解釈する際に注意しなければいけないポイントがある。


 まず、ドナーの蛍光のアクセプターチャネルへの漏れ込みであり、S/N比の減少の原因となる。漏れ込みを極力抑えるには、適切なバンドパスフィルターを用いる。光量を犠牲にしても、ドナー蛍光が漏れ込まない波長を選ぶ方がFRETは特異的に検出できる。
 まず、ドナーの蛍光のアクセプターチャネルへの漏れ込みであり、信号/雑音比の減少の原因となる。漏れ込みを極力抑えるには、適切な[[wj:バンドパスフィルター|バンドパスフィルター]]を用いる。光量を犠牲にしても、ドナー蛍光が漏れ込まない波長を選ぶ方がFRETは特異的に検出できる。


 また、蛍光画像にバックグラウンドノイズがある事があるが、それがFRET変化に影響を与える。バックグラウンドノイズを引き算することで、よりFRETが計算できるが、蛍光シグナルが暗くなると、少しのバックグランドのぶれがシグナルを左右する。例えば細胞の周辺はが暗いのでバックグラウンドの引き算により偽陽性が出やすいので注意を要する。
 また、蛍光画像に背景雑音がある事があるが、それがFRET変化に影響を与える。背景雑音を引き算することで、よりFRETが計算できるが、蛍光シグナルが暗いと、少しの背景雑音のぶれがシグナルを左右する。例えば細胞の周辺は暗いので背景雑音の引き算により偽陽性が出やすいので注意を要する。


 次に、2分子間FRETで起きることであるが(以下参照)、ドナーとアクセプターの局在の違いは偽陽性を生じる。リンカーで連結し1分子にするか、局在しているアクセプターの蛍光強度を補正することで避けることが可能である。
 2分子間FRETのイメージングでは、ドナーとアクセプターの局在の違いは偽陽性を生じる。リンカーで連結し1分子にするか、局在しているアクセプターの蛍光強度を補正することで避けることが可能である。


=== アクセプターブリーチング法 ===
=== アクセプターブリーチング法 ===
 適切な波長の光によって、アクセプターを退色させることでFRETを解消することができる。この解消度合いより生じていたFRETを算出する。つまり、F'<sub>D</sub>がアクセプターの退色によりF<sub>D</sub>と等しくなる事により、E=0となる。その為、退色前後の画像を比較する事によりEが検出可能である。しかしながら、この手法は不可逆的であるために経時的変化を追うことは困難である。
 適切な波長の光によって、アクセプターを退色させることでFRETを解消することができる。この解消度合いより生じていたFRETを算出する。つまり、F'<sub>D</sub>がアクセプターの退色によりF<sub>D</sub>と等しくなる事により、E=0となる。その為、退色前後の画像を比較する事によりEが検出可能である。しかしながら、この手法は不可逆的であるために経時的変化を追うことは困難である。
 
[[Image:FRET-図2new.jpg|thumb|right|300px|<b>図3:励起光によって励起された電子が基底状態に戻る際の減衰曲線</b><br>緑の太い線がFRETが起きていない時のドナー蛍光の減衰曲線。FRETを起こしたドナー蛍光の速度が加わることにより速度定数が大きくなり細い緑の線のように減衰曲線の傾斜が大きくなる。]]
=== 蛍光寿命イメージング===
=== 蛍光寿命イメージング===
 蛍光体が励起されると、図2に示すような減衰曲線に従って蛍光を発する。蛍光寿命は、蛍光の減衰曲線の速度定数''k''と逆数である。 ''N<sub>0</sub>''は励起光によって励起された電子の数、''k''は励起状態にある電子が基底状態に戻る速度定数であり、蛍光として基底状態に戻る際の速度定数、熱を発して基底状態に戻るなどの無放射遷移の速度定数の和として表される。
 蛍光体が励起されると、図3に示すような減衰曲線に従って蛍光を発する。蛍光寿命は、蛍光の減衰曲線の速度定数''k''の[[wj:逆数|逆数]]である。 ''N<sub>0</sub>''は励起光によって励起された電子の数、''k''は励起状態にある電子が基底状態に戻る速度定数であり、蛍光として基底状態に戻る際の速度定数、熱を発して基底状態に戻るなどの無放射遷移の速度定数の和として表される。


 FRETを起こしている時の速度定数''k<sub>f</sub>''は、以下の式で規定される。  
 FRETを起こしている時の速度定数''k<sub>f</sub>''は、以下の式で規定される。  
95行目: 90行目:




 ここで、''k<sub>D</sub>''はドナーの蛍光の速度定数、''Q<sub>D</sub>''はドナーの蛍光の量子収率、''&kappa;''はドナーとアクセプターの双極子モーメントの配向、''r''はドナーとアクセプターの距離、''N<sub>A</sub>''はアボガドロ数、''n''は溶媒の屈折率である。
 ここで、''k<sub>D</sub>''はドナーの蛍光の速度定数である。
 
 ドナー蛍光の速度定数とFRET効率Eとは次のような関係に有る。




103行目: 100行目:
 ここで''&tau;'<sub>D</sub>''と''&tau;<sub>D</sub>''はそれぞれ、アクセプターが存在する場合と存在しない場合でのドナー蛍光寿命である。つまり、FRETが起きると、蛍光寿命が短縮する(図4)。
 ここで''&tau;'<sub>D</sub>''と''&tau;<sub>D</sub>''はそれぞれ、アクセプターが存在する場合と存在しない場合でのドナー蛍光寿命である。つまり、FRETが起きると、蛍光寿命が短縮する(図4)。


 蛍光寿命測定法は、アクセプターの蛍光は必要ないため、蛍光強度比測定法に比べて、蛍光の漏れ込み、アクセプターとの局在の違いなどによって生じる疑陽性を回避できる。
 蛍光寿命測定法は、アクセプターの蛍光は必要ないため、蛍光強度比測定法に比べて、蛍光の漏れ込み、ドナーとアクセプターの局在の違いなどによって生じる疑陽性を回避できる。


 蛍光寿命の変化を測定する方法は2つある。
 蛍光寿命の変化を測定する方法は2つある。


====時間ドメイン====
====時間ドメイン====
 励起光によって発生した一つ一つの光子が検出器まで届くまでの時間(数nsec)を計測することで時定数&tau;を計算する。時間を横軸としてヒストグラムを作製することができる。通常蛍光寿命は指数関数に従い減衰していく。FRETを起こしている分子と起こしていない分子が共存する時には二重指数関数になるため、二重指数関数にfittingすることによって、FRETの起きている分子の割合が算出できる。得られる光子の数が少ない時には二重指数関数fittingは不正確になりやすい為、単に平均蛍光寿命を計算するだけで済ませる場合も有る。単一指数関数の場合は、平均蛍光寿命は&tau;に等しくなる。
 励起光によって発生した一つ一つの光子が検出器まで届くまでの時間(数nsec)を計測することで時定数&tau;を計算する。時間を横軸としてヒストグラムを作製することができる。通常蛍光寿命は指数関数に従い減衰していく。FRETを起こしている分子と起こしていない分子が共存する時には[[wj:二重指数関数|二重指数関数]]になるため、二重指数関数にfittingすることによって、FRETの起きている分子の割合が算出できる。得られる光子の数が少ない時には二重指数関数fittingは不正確になりやすい為、単に平均蛍光寿命を計算するだけで済ませる場合も有る。単一指数関数の場合は、平均蛍光寿命は&tau;に等しくなる。
 
 取得した蛍光を理論上全てデータに反映させることができるが、実際には、光子取得後、再び光子を取得する状態に戻るハードウェアのリセット時間(dead time)などがあり全ての光子を取得するには、改善の余地がある。また、秒単位の経時変化を追うためには、低解像度で画像取得されているのが現状で有り、多数のピクセルから蛍光寿命を取得するためには、処理速度の速いハードウェアが必要となる。さらに、短時間で画像を取得するためには、明るいサンプルであったほうがよい。


 光源にはパルスレーザーを用いる。神経系の研究によく用いられる二光子顕微鏡に後付けする事も可能である。
 理論上は取得した蛍光を全てデータに反映させることができるが、実際には光子取得後、再び光子を取得する状態に戻るハードウェアのリセット時間(dead time)などがあり全ての光子を取得する事は出来ない。また、秒単位の経時変化を追うためには、低解像度で画像取得されているのが現状で有り、多数のピクセルから蛍光寿命を取得するためには、処理速度の速いハードウェアが必要となる。


[[Image:FRET-図4.jpg|thumb|right|300px|<b>図4:海馬スライスCA1錐体細胞に発現させたGFPのFLIMイメージおよび減衰曲線</b><br>(横軸は時間、縦軸は光子数)をBecker&Hickl社software、SPC imageにて取得した。実際には、20秒で数千個オーダーの光子を取得する。これらの光子の発生確率分布が減衰曲線を形成し、近似曲線をフィッティングさせることで蛍光寿命を取得する。]]
 光源には[[wj:パルスレーザー|パルスレーザー]]を用いる。神経系の研究によく用いられる[[二光子顕微鏡]]に後付けする事も可能である。


[[Image:FRET-図4.jpg|thumb|right|300px|<b>図4. [[海馬]][[スライス]][[CA1]][[錐体細胞]]に発現させたGFPの蛍光寿命イメージおよび減衰曲線</b><br>(横軸は時間、縦軸は光子数)。実際には、20秒で数千個オーダーの光子を取得する。これらの光子の発生確率分布が減衰曲線を形成し、近似曲線をフィッティングさせることで蛍光寿命を取得する。]]
[[File:FRET-Heterodyning.png|thumb|right|300px|<b>図5. 周波数ドメインによる測定</b><br>光源の強度を高周波で変調させるのと同時に、検出器も高周波で変調させる。その時に光源の周波数(f<sub>ex</sub>)と検出器の周波数(f<sub>s</sub>)をずらし、そこから蛍光寿命を計算により求める。]]
====周波数ドメイン====
====周波数ドメイン====
 光源の強度を高周波で変調させるのと同時に、検出器も高周波で変調させる。その時に光源と検出器の周波数をずらしておく(heterodyning)。多数のサイクルを繰り返す事により、間接的に蛍光寿命を計算していく。画像の取得にかかる時間がtime domainと比較して短いのが特徴である。
 光源の強度を高周波で変調させるのと同時に、検出器も高周波で変調させる。その時に光源と検出器の周波数をずらしておく(heterodyning)。多数のサイクルを繰り返す事により、間接的に蛍光寿命を計算していく。画像の取得にかかる時間がtime domainと比較して短いのが特徴である。
122行目: 119行目:


===異方性測定===
===異方性測定===
 一つの蛍光団のストークスシフトが小さい場合、励起スペクトルと蛍光スペクトルの重なりが大きいような蛍光団では、同一の蛍光団同士で、[[wikipedia:Homo-FRET|Homo-FRET]]が生じる。Homo-FRETは、蛍光強度および蛍光寿命は変化しないが、異方性が変わる。この原理を用いて、一般的には、分子同士のクラスターの度合いなどに応用されている。
 一つの蛍光団の[[wj:ストークスシフト|ストークスシフト]]が小さい場合、励起スペクトルと蛍光スペクトルの重なりが大きいような蛍光団では、同一の蛍光団同士で、[[wikipedia:Homo-FRET|Homo-FRET]]が生じる。Homo-FRETは、蛍光強度および蛍光寿命は変化しないが、[[wj:異方性|異方性]]が変わる。この原理を用いて分子同士のクラスターの度合いなどに応用されている。


== プローブのデザイン ==
== プローブのデザイン ==
[[ファイル:FRET Probes.png|thumb|right|350px|'''図5. 様々なフレットプローブの類型'''<br>]]
[[ファイル:FRET Probes.png|thumb|right|350px|'''図6. 様々なフレットプローブの類型'''<br>]]
 かつてはFRETを生細胞イメージングするのは、非常に煩雑であった。プローブとなるタンパク質を精製、化学的に色素でラベルし、細胞に導入するという操作が必要であり、神経科学分野での応用はきわめて限定されたものであった。しかし、GFPとその変異体、類縁タンパク質の発見により今日においては様々な細胞生物学の分野において、多くの蛍光タンパク質を基にしたFRETプローブが使用されている。
 GFPとその変異体、類縁タンパク質の発見により今日においては様々な細胞生物学の分野において、多くの蛍光タンパク質を基にしたFRETプローブが使用されている。


 これらのプローブを分類すると、以下のように分類される(表1)。
 これらのプローブを分類すると、以下のように分類される(表1)。


===プローブの分解に伴うFRETの変化を検出するプローブ===
===プローブの分解に伴うFRETの変化を検出するプローブ===
 この原理は、FRETプローブの最も初期に導入されたデザインである(図6A)。例として、[[wj:第X因子|第X因子]]などのプロテアーゼが挙げられ<ref><pubmed>8707050</pubmed></ref>、[[wikipedia:ja:プロテアーゼ|プロテアーゼ]]によって分解される配列の両端にドナーとアクセプターを連結する。プロテアーゼによって、この配列が分解されるとドナーとアクセプターの間に起きていたFRETが解消されることによって、プロテアーゼの活性を評価する。[[wikipedia:ja:カスパーゼ|カスパーゼ]]などの活性を測定するためにも使用されている<ref><pubmed>9518501</pubmed></ref><ref><pubmed>12409609</pubmed></ref><ref><pubmed>21637712</pubmed></ref><ref><pubmed>17946841</pubmed></ref>。このプローブのデザインの短所としては、反応が不可逆的であるために、一つの実験系で何度も測定することが困難であることである。
 この原理は、FRETプローブの最も初期に導入されたデザインである(図6A)。プロテアーゼによって分解される配列の両端にドナーとアクセプターを連結する。プロテアーゼによって、この配列が分解されるとドナーとアクセプターの間に起きていたFRETが解消されることによって、プロテアーゼの活性を評価する。例として、[[wj:第X因子|第X因子]]、[[wikipedia:ja:カスパーゼ|カスパーゼ]]などの[[wikipedia:ja:プロテアーゼ|プロテアーゼ]]活性のプローブが挙げられる<ref><pubmed>8707050</pubmed></ref><ref><pubmed>9518501</pubmed></ref><ref><pubmed>12409609</pubmed></ref><ref><pubmed>21637712</pubmed></ref><ref><pubmed>17946841</pubmed></ref>。このプローブのデザインの短所としては、反応が不可逆的であるために、一つの実験系で何度も測定することが困難であることである。


===二分子間相互作用を利用したFRETプローブ===
===二分子間相互作用を利用したFRETプローブ===
 興味のあるタンパク質同士の相互作用を測定する際に、この原理が用いられる。一方にドナー、他方にアクセプターを連結する。タンパク質同士が結合していないときにはFRETは起きていないが、結合することによってFRETを生じる。応用例としては蛍光寿命を基にした[[Gタンパク質]]の活性化の測定に用いられている<ref><pubmed>11429608</pubmed></ref>。また、[[アクチン]]の重合度を測定するために、アクチンにドナー、アクセプターを連結して測定している例もある<ref><pubmed>15361876</pubmed></ref>。 距離のファクターを生かせるために、比較的大きなシグナルが得られる一方、内在性のタンパク質が反応に関与するために、その分FRET応答が減少する。ドナーとアクセプターの発現量の差によるFRETの応答の変化も問題になる。特に、アクセプターと結合しないドナーが多量に存在するとFRET応答が小さくなる。一般にアクセプターが多い系が、使用に適している。
 興味のあるタンパク質同士の相互作用を測定する際に、この原理が用いられる。一方にドナー、他方にアクセプターを連結する。タンパク質同士が結合していないときにはFRETは起きていないが、結合することによってFRETを生じる。
 
 距離のファクターを生かせるために、比較的大きなシグナルが得られる一方、内在性のタンパク質が反応に関与するために、その分FRET応答が減少する。ドナーとアクセプターの発現量の差によるFRETの応答の変化も問題になる。特に、アクセプターと結合しないドナーが多量に存在するとFRET応答が小さくなる。一般にアクセプターが多い系が、使用に適している。
 
 タンパク質相互作用を測定する事により間接的にシグナル伝達系の活性化も測定する事が可能である。例えば、[[低分子量Gタンパク質]]が活性化に伴い、エフェクタータンパク質と相互作用が起こる事を利用し、低分子量Gタンパク質活性を測定する事が可能である。
 
 また、タンパク質相互作用はポリマーでも良い。これを利用して[[アクチン]]の重合状態の測定にも用いられた<ref name=ref15361876><pubmed>15361876</pubmed></ref>。
   
   
===一分子内FRETプローブ===
===一分子内FRETプローブ===
 一分子内にドナーとアクセプターを連結し、これらの配向および距離の変化を利用する。2分子間FRETに生じるような発現量の違いやドナーとアクセプターの局在の変化によって生じるアーチファクトなどを考慮する必要がない。さらに活性に伴うタンパク質の構造変化などを利用するために、比較的容易に応答するプローブが作製できるが、ドナーとアクセプターを適切な位置に配置するなどの検討が必要である。
 一分子内にドナーとアクセプターを連結し、これらの配向および距離の変化を利用する。2分子間FRETに生じるような発現量の違いやドナーとアクセプターの局在の変化によって生じる疑似陽性を考慮する必要がない。さらに活性に伴うタンパク質の構造変化などを利用するために、比較的容易に応答するプローブが作製できるが、ドナーとアクセプターを適切な位置に配置するなどの検討が必要である。
   
   
====タンパク質の構造変化を基にしたFRETプローブ====
====タンパク質の構造変化====
 興味のあるタンパク質が、活性化の際に構造変化を誘起することが知られている場合には構造変化を利用することができる。タンパク質のC末およびN末にドナーおよびアクセプターを連結する。この手法は、[[CaMKII]]<ref><pubmed>15788767</pubmed></ref>、[[Calcinulin]]<ref><pubmed>18493642</pubmed></ref>、[[raf]]<ref><pubmed>15711535</pubmed></ref><ref><pubmed>16858395</pubmed></ref>、[[膜電位]]測定<ref><pubmed>18622396</pubmed></ref>、などに用いられている。
 興味のあるタンパク質が、活性化の際に構造変化を誘起することが知られている場合には構造変化を利用することができる。タンパク質のC末およびN末にドナーおよびアクセプターを連結する。この手法は、[[CaMKII]]<ref><pubmed>15788767</pubmed></ref>、[[カルシニューリン]]<ref><pubmed>18493642</pubmed></ref>、[[raf]]<ref><pubmed>15711535</pubmed></ref><ref><pubmed>16858395</pubmed></ref>、[[膜電位]]測定<ref><pubmed>18622396</pubmed></ref>、などに用いられている。
   
   
====タンパク質結合に伴う構造変化を基にしたFRETプローブ====
====タンパク質結合に伴う構造変化====
 ある種のタンパク質は活性化、非活性化に伴い、下流のタンパク質と結合する。このような相互作用を利用してタンパク質の活性化、非活性化を測定することができる。例えば[[カルシウム]]FRETプローブ、カメレオンはこの原理を利用している<ref><pubmed>9278050</pubmed></ref>。 また、[[低分子Gタンパク質]]の活性化プローブは、低分子Gタンパク質、シグナル伝達下流の結合タンパク質の結合ドメインをドナーとアクセプターで挟んだ形状をしている。低分子Gタンパク質が[[GDP]]から[[GTP]]結合型になり活性化すると、結合ドメインと相互作用をしFRETが生じる<ref><pubmed>16429133</pubmed></ref>。  
 ある種のタンパク質は活性化、不活性化に伴い、下流のタンパク質と結合する。このような相互作用を利用してタンパク質の活性化、不活性化を測定することができる。
 
 例えば[[カルシウム]]FRETプローブ、カメレオンはこの原理を利用している<ref><pubmed>9278050</pubmed></ref>。 また、[[低分子量Gタンパク質]]の活性化プローブは、低分子量Gタンパク質、シグナル伝達下流の結合タンパク質の結合ドメインをドナーとアクセプターで挟んだ形状をしている。低分子Gタンパク質が[[GDP]]から[[GTP]]結合型になり活性化すると、結合ドメインと相互作用によりFRETが生じる<ref><pubmed>16429133</pubmed></ref>。  
   
   
====共有結合修飾によって生じる構造変化を測定するプローブ====
====共有結合修飾によって生じる構造変化====
 このプローブは、ドナー、アクセプター、[[wikipedia:ja:共有結合|共有結合]]修飾を受けるドメイン、これを認識するドメインからなる。プローブが共有結合修飾を受けると、認識するドメインが結合し、ドナーとアクセプターの距離が縮まりFRETが起きる。このプローブは、キナーゼの活性化を測定するために使用される<ref><pubmed>11875431</pubmed></ref><ref><pubmed>11752449</pubmed></ref>
 このプローブは、ドナー、アクセプター、[[wj:共有結合|共有結合]]修飾を受けるドメイン、これを認識するドメインからなる。プローブが共有結合修飾を受けると、認識するドメインが結合し、ドナーとアクセプターの距離が縮まりFRETが起きる。
 
 このプローブは、[[キナーゼ]]の活性化を測定するために使用される<ref><pubmed>11875431</pubmed></ref><ref><pubmed>11752449</pubmed></ref>。この場合、キナーゼの基質となるタンパク質に[[14-3-3タンパク質]]のような[[リン酸化]]タンパク質を認識するドメインを融合し、その結合に伴うタンパク質構造変化を、両端に結合させたドナーとアクセプター間のFRETで測定する。
   
   
====生体膜上の小分子を測定するFRETプローブ====
====生体膜上の小分子====
 このプローブは、主に、[[wikipedia:ja:脂質|脂質]]分子に応用されてきた。ドナー、脂質結合ドメイン、アクセプターが堅いヘリックス構造で連結され、[[グリシン]]グリシン配列をその途中に導入することで、そこを中心に一方の蛍光タンパク質が回転することができる。膜結合ドメインを用いて、プローブを結合させる。脂質分子が増えた際に、脂質結合ドメインが脂質分子を認識し、構造変化が起き、ドナートアクセプターの距離が縮まりFRETが生じる。ジアシルグリセロール<ref><pubmed>16990811</pubmed></ref>、イノシトールリン脂質群<ref><pubmed>14528311</pubmed></ref><ref><pubmed>18685081</pubmed></ref><ref><pubmed>18685081</pubmed></ref><ref><pubmed>18685081</pubmed></ref>を測定するために用いられている。
 このプローブは、主に、[[wj:脂質|脂質]]分子に応用されてきた。ドナー、脂質結合ドメイン、アクセプターがヘリックス構造で連結され、[[グリシン]]-グリシン配列をその途中に導入することで、そこを中心に一方の蛍光タンパク質が回転することができる。膜結合ドメインを用いて、プローブを結合させる。脂質分子が増えた際に、脂質結合ドメインが脂質分子を認識し、構造変化が起き、ドナーとアクセプターの距離が縮まりFRETが生じる。[[ジアシルグリセロール]]<ref><pubmed>16990811</pubmed></ref>、[[ホスファチジルイノシトール|イノシトールリン脂質]]群<ref><pubmed>14528311</pubmed></ref><ref><pubmed>18685081</pubmed></ref><ref><pubmed>18685081</pubmed></ref><ref><pubmed>18685081</pubmed></ref>を測定するために用いられている。
 
{| class="wikitable"
{| class="wikitable"
|+ 表1.
|+ 表1.様々なFRETプローブ
|-
|-
| 分類||対象||プローブ名||年||プローブデザイン||参考文献
| 分類||対象||プローブ名||年||プローブデザイン||参考文献
|-
|-
|rowspan="21" | 生体内小分子|| [[カルシウム]] ||Cameleon|| 1997 || 3-2 || <ref><pubmed>9278050</pubmed></ref>
|rowspan="21" | 生体内小分子|| [[カルシウム]] ||Cameleon|| 1997 || E || <ref><pubmed>9278050</pubmed></ref>
|-
|-
|[[サイクリックGMP]] ([[cGMP]]) ||CGY, Cygnet, pGES-DE2, cGi|| 2000, 2001, 2006 || 3-1 || <ref><pubmed>11140757</pubmed></ref><ref><pubmed>11226257</pubmed></ref><ref><pubmed>16369548</pubmed></ref><ref><pubmed>23801067</pubmed></ref>   
|[[サイクリックGMP]] ([[cGMP]]) ||CGY, Cygnet, pGES-DE2, cGi|| 2000, 2001, 2006 || 3-1 || <ref><pubmed>11140757</pubmed></ref><ref><pubmed>11226257</pubmed></ref><ref><pubmed>16369548</pubmed></ref><ref><pubmed>23801067</pubmed></ref>   
187行目: 195行目:
|[[wj:亜鉛|Zn<sup>2+</sup>]] ||eCALWY-1|| 2009 || 2 || <ref><pubmed>19718032</pubmed></ref>
|[[wj:亜鉛|Zn<sup>2+</sup>]] ||eCALWY-1|| 2009 || 2 || <ref><pubmed>19718032</pubmed></ref>
|-
|-
|[[wj:塩素|Cl<sup>-</sup>]] ||Clomeleon|| 2000 || other || <ref><pubmed>11055428</pubmed></ref>
|[[wj:塩素|Cl<sup>-</sup>]] ||Clomeleon|| 2000 || その他 || <ref><pubmed>11055428</pubmed></ref>
|-
|-
|[[wj:水素イオン濃度|水素イオン濃度]] (pH) ||GFpH, YFpH|| 2001 || other || <ref><pubmed>11716495</pubmed></ref>
|[[wj:水素イオン濃度|水素イオン濃度]] (pH) ||GFpH, YFpH|| 2001 || その他 || <ref><pubmed>11716495</pubmed></ref>
|-
|-
|[[wj:グルコース|グルコース]] ||FLIPglu|| 2003 || 3-1 || <ref><pubmed>12649277</pubmed></ref>
|[[wj:グルコース|グルコース]] ||FLIPglu|| 2003 || 3-1 || <ref><pubmed>12649277</pubmed></ref>
197行目: 205行目:
|[[wj:リボース|リボース]]||FLIPrib|| 2003 || 3-1 || <ref><pubmed>14550551</pubmed></ref>
|[[wj:リボース|リボース]]||FLIPrib|| 2003 || 3-1 || <ref><pubmed>14550551</pubmed></ref>
|-
|-
|rowspan="25" | タンパク質リン酸化酵素 || [[カルシウム/カルモジュリン依存性タンパク質リン酸化酵素II]] ([[CaMKII]]) ||Camui α, green-Camui α, Camk2a reporter|| 2005, 2009, 2011, 2013 || 3-1 || <ref><pubmed>15788767</pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref name=ref23602566><pubmed> 23602566</pubmed></ref><ref name=ref21506563><pubmed> 21506563</pubmed></ref>
|rowspan="25" | タンパク質リン酸化酵素 || [[カルシウム/カルモジュリン依存性タンパク質リン酸化酵素II]] ([[CaMKII]]) ||Camui α, green-Camui α, Camk2a reporter|| 2005, 2009, 2011, 2013 || D || <ref><pubmed>15788767</pubmed></ref><ref><pubmed> 19295602</pubmed></ref><ref name=ref23602566><pubmed> 23602566</pubmed></ref><ref name=ref21506563><pubmed> 21506563</pubmed></ref>
|-
|-
| [[Src]] ||Srcus|| 2005, 2005, 2007 || 3-3 || <ref name=ref11752449><pubmed>11752449</pubmed></ref><ref><pubmed> 15846350</pubmed></ref><ref><pubmed> 17284441</pubmed></ref>
| [[Src]] ||Srcus|| 2005, 2005, 2007 || 3-3 || <ref name=ref11752449><pubmed>11752449</pubmed></ref><ref><pubmed> 15846350</pubmed></ref><ref><pubmed> 17284441</pubmed></ref>
207行目: 215行目:
| [[cAMP依存性タンパク質リン酸化酵素]] ([[Aキナーゼ]], [[プロテインキナーゼA]], [[PKA]]) ||ART, AKAR|| 2000, 2001 || 3-3 || <ref><pubmed>10700148</pubmed></ref><ref><pubmed>11752448</pubmed></ref>
| [[cAMP依存性タンパク質リン酸化酵素]] ([[Aキナーゼ]], [[プロテインキナーゼA]], [[PKA]]) ||ART, AKAR|| 2000, 2001 || 3-3 || <ref><pubmed>10700148</pubmed></ref><ref><pubmed>11752448</pubmed></ref>
|-
|-
| [[Abl]] ||Picchu|| 2001 || 3-3 || <ref name=ref11752449 />
| [[Abl]] ||Picchu|| 2001 || E || <ref name=ref11752449 />
|-
|-
| [[Bcr]]-Abl ||Bcr-Abl activity sensor||2010 || 3-3 || <ref><pubmed>20817824</pubmed></ref>
| [[Bcr]]-Abl ||Bcr-Abl activity sensor||2010 || E || <ref><pubmed>20817824</pubmed></ref>
|-
|-
| [[c-Raf]] ||Prin-cRaf|| 2005 || 3-1 || <ref><pubmed>15711535</pubmed></ref>
| [[c-Raf]] ||Prin-cRaf|| 2005 || 3-1 || <ref><pubmed>15711535</pubmed></ref>
249行目: 257行目:
| [[ホスファターゼ]] || [[カルシニューリン]] ||CaNAR1|| 2008, 2013 || 3-1 || <ref name=ref23602566 /><ref><pubmed> 18493642</pubmed></ref>
| [[ホスファターゼ]] || [[カルシニューリン]] ||CaNAR1|| 2008, 2013 || 3-1 || <ref name=ref23602566 /><ref><pubmed> 18493642</pubmed></ref>
|-
|-
|rowspan="8" | [[低分子量Gタンパク質]] || [[Ras]] ||Raichu-Ras, Fras|| 2001, 2006 || 3-2,2 || <ref><pubmed>16429133</pubmed></ref><ref name=ref11429608><pubmed> 11429608</pubmed></ref>
|rowspan="8" | [[低分子量Gタンパク質]] || [[Ras]] ||Raichu-Ras, Fras|| 2001, 2006 || B, E || <ref><pubmed>16429133</pubmed></ref><ref name=ref11429608><pubmed> 11429608</pubmed></ref>
|-
|-
| [[Rap]] ||Raichu-Rap|| 2001 || 3-2 || <ref name=ref11429608></ref>
| [[Rap]] ||Raichu-Rap|| 2001 || E || <ref name=ref11429608></ref>
|-
|-
| [[Rac]] ||Raichu-[[Rac1]]|| 2004 || 3-2 || <ref name=ref14570905><pubmed>14570905</pubmed></ref>
| [[Rac]] ||Raichu-[[Rac1]]|| 2004 || E || <ref name=ref14570905><pubmed>14570905</pubmed></ref>
|-
|-
| [[Rab5]] ||Raichu-Rab5|| 2008 || 3-2 || <ref><pubmed>18385674</pubmed></ref>
| [[Rab5]] ||Raichu-Rab5|| 2008 || E || <ref><pubmed>18385674</pubmed></ref>
|-
|-
| [[Rho]] ||Raichu-RhoA|| 2003, 2011 || 3-2, 2 || <ref name=ref21423166><pubmed>21423166</pubmed></ref><ref><pubmed> 12860967</pubmed></ref>
| [[Rho]] ||Raichu-RhoA|| 2003, 2011 || B, E || <ref name=ref21423166><pubmed>21423166</pubmed></ref><ref><pubmed> 12860967</pubmed></ref>
|-
|-
| [[Cdc42]] ||Raichu-cdc42|| 2004, 2011 || 3-2, 2 || <ref name=ref14570905 /><ref name=ref21423166 />
| [[Cdc42]] ||Raichu-cdc42|| 2004, 2011 || B, E || <ref name=ref14570905 /><ref name=ref21423166 />
|-
|-
| [[Ral]] ||Raichu-Ral|| 2004 || 3-3 || <ref><pubmed>15034142</pubmed></ref>
| [[Ral]] ||Raichu-Ral|| 2004 || 3-3 || <ref><pubmed>15034142</pubmed></ref>
279行目: 287行目:
| [[アセチル化]] || [[ヒストン]]アセチル化 ||Histac|| 2004, 2009 || 3-3 || <ref><pubmed>15137760</pubmed></ref><ref><pubmed> 19805290</pubmed></ref>
| [[アセチル化]] || [[ヒストン]]アセチル化 ||Histac|| 2004, 2009 || 3-3 || <ref><pubmed>15137760</pubmed></ref><ref><pubmed> 19805290</pubmed></ref>
|-
|-
|rowspan="6" | [[脂質]] || [[ホスファチジルイノシトール-3,4,5-三リン酸]] ([[PIP3|PIP<sub>3</sub>]]) ||Fllip, FLIMPA|| 2003 || 3-4 || <ref><pubmed>14528311</pubmed></ref>
|rowspan="6" | [[脂質]] || [[ホスファチジルイノシトール-3,4,5-三リン酸]] ([[PIP3|PIP<sub>3</sub>]]) ||Fllip, FLIMPA|| 2003 || G || <ref><pubmed>14528311</pubmed></ref>
|-
|-
| [[ホスファチジルイノシトール-4,5-二リン酸]] ([[PIP2|PI(4,5)P<sub>2</sub>]]) ||Pippi-PI(4,5)P<sub>2</sub>|| 2008 || 3-4 || <ref name=ref18685081><pubmed>18685081</pubmed></ref>
| [[ホスファチジルイノシトール-4,5-二リン酸]] ([[PIP2|PI(4,5)P<sub>2</sub>]]) ||Pippi-PI(4,5)P<sub>2</sub>|| 2008 || G || <ref name=ref18685081><pubmed>18685081</pubmed></ref>
|-
|-
| [[ホスファチジルイノシトール-3,4-二リン酸]] ([[PI(3,4)P2|PI(3,4)P<sub>2</sub>]]) ||Pippi-PI(3,4)P<sub>2</sub>|| 2008 || 3-4 || <ref name=ref18685081 />
| [[ホスファチジルイノシトール-3,4-二リン酸]] ([[PI(3,4)P2|PI(3,4)P<sub>2</sub>]]) ||Pippi-PI(3,4)P<sub>2</sub>|| 2008 || G || <ref name=ref18685081 />
|-
|-
| [[ホスファチジルイノシトール-4-リン酸]] ([[PI4P|PI4P]]) ||Pippi-PI(4)P|| 2008 || 3-4 || <ref name=ref18685081 />
| [[ホスファチジルイノシトール-4-リン酸]] ([[PI4P|PI4P]]) ||Pippi-PI(4)P|| 2008 || G || <ref name=ref18685081 />
|-
|-
| [[ホスファチジン酸]] ||Pii|| 2010 || 3-4 || <ref><pubmed>20826779</pubmed></ref>
| [[ホスファチジン酸]] ||Pii|| 2010 || G || <ref><pubmed>20826779</pubmed></ref>
|-
|-
| [[ジアシルグリセロール]] (DAG) ||Daglas, DIGDA|| 2006, 2008 || 3-4 || <ref name=ref18685081 /><ref><pubmed> 16990811</pubmed></ref>
| [[ジアシルグリセロール]] (DAG) ||Daglas, DIGDA|| 2006, 2008 || G || <ref name=ref18685081 /><ref><pubmed> 16990811</pubmed></ref>
|-
|-
|rowspan="6" | タンパク質相互作用 || [[アクチン]] || ||2004, 2008 || 2 || <ref><pubmed>15361876</pubmed></ref><ref><pubmed> 18512154</pubmed></ref>
|rowspan="6" | タンパク質相互作用 || [[アクチン]] || ||2004, 2008 || C || <ref><pubmed>15361876</pubmed></ref><ref><pubmed> 18512154</pubmed></ref>
|-
|-
| [[3-ホスホイノシチド依存性プロテインキナーゼ1]]([[phosphoinositide-dependent protein kinase 1]], [[PDK1]])-[[タンパク質キナーゼB]] ([[protein kinase B]], [[PKB]], [[Akt]])相互作用 || ||2007 || 2 || <ref name=ref17407381 />
| [[3-ホスホイノシチド依存性プロテインキナーゼ1]]([[phosphoinositide-dependent protein kinase 1]], [[PDK1]])-[[タンパク質キナーゼB]] ([[protein kinase B]], [[PKB]], [[Akt]])相互作用 || ||2007 || 2 || <ref name=ref17407381 />
|-
|-
| [[蛋白質チロシン脱リン酸化酵素1B]] ([[protein tyrosine phosphatase 1B]], [[PTP 1B]])-[[受容体型チロシンキナーゼ]] ([[receptor tyrosine kinase]]s, [[RTK]]s)相互作用 || || 2002 || 2 || <ref><pubmed>11872838</pubmed></ref>
| [[タンパク質チロシン脱リン酸化酵素1B]] ([[protein tyrosine phosphatase 1B]], [[PTP 1B]])-[[受容体型チロシンキナーゼ]] ([[receptor tyrosine kinase]]s, [[RTK]]s)相互作用 || || 2002 || 2 || <ref><pubmed>11872838</pubmed></ref>
|-
|-
| [[乳癌耐性タンパク質]] ([[breast cancer resistance protein]], [[BCRP]])/[[ATP結合カセット輸送体]] ([[ATP-binding cassette sub-family G member]], [[ABCG]])相互作用 || ||2010 || 2 || <ref><pubmed>20622991</pubmed></ref>
| [[乳癌耐性タンパク質]] ([[breast cancer resistance protein]], [[BCRP]])/[[ATP結合カセット輸送体]] ([[ATP-binding cassette sub-family G member]], [[ABCG]])相互作用 || ||2010 || 2 || <ref><pubmed>20622991</pubmed></ref>
|-
|-
| [[コフィリン]]-[[アクチン]]相互作用 || ||2008 || 2 || <ref><pubmed>17993279</pubmed></ref>
| [[コフィリン]]-[[アクチン]]相互作用 || ||2008 || B || <ref><pubmed>17993279</pubmed></ref>
|-
|-
| [[第10染色体ホスファターゼ・テンシン・ホモログ]] ([[Phosphatase and tensin homolog deleted from chromosome 10]], [[PTEN]])-[[ミオシンV]]相互作用 || ||2009 || 2 || <ref><pubmed>19767745</pubmed></ref>
| [[第10染色体ホスファターゼ・テンシン・ホモログ]] ([[Phosphatase and tensin homolog deleted from chromosome 10]], [[PTEN]])-[[ミオシンV]]相互作用 || ||2009 || 2 || <ref><pubmed>19767745</pubmed></ref>
|-
|-
|rowspan="8" | [[プロテアーゼ]] || [[カスパーゼ-3]] ||EGFP-DEVD-EBFP|| 1998 || 1 || <ref><pubmed>9518501</pubmed></ref>
|rowspan="8" | [[プロテアーゼ]] || [[カスパーゼ-3]] ||EGFP-DEVD-EBFP|| 1998 || A || <ref><pubmed>9518501</pubmed></ref>
|-
|-
| [[カスパーゼ-8]] ||CFP-c3-YFP-c6-mRFP|| 2002 || 1 || <ref><pubmed>12409609</pubmed></ref>
| [[カスパーゼ-8]] ||CFP-c3-YFP-c6-mRFP|| 2002 || A || <ref><pubmed>12409609</pubmed></ref>
|-
|-
| [[カスパーゼ-9]] ||SCAT9|| 2011 || 1 || <ref><pubmed>21637712</pubmed></ref>
| [[カスパーゼ-9]] ||SCAT9|| 2011 || A || <ref><pubmed>21637712</pubmed></ref>
|-
|-
| [[カスパーゼ-7]] ||VDEVDc|| 2006 || 1 || <ref><pubmed>17946841</pubmed></ref>
| [[カスパーゼ-7]] ||VDEVDc|| 2006 || A || <ref><pubmed>17946841</pubmed></ref>
|-
|-
| [[マトリックスメタロプロテアーゼ]] ([[MMP]]) ||YFP-MSS-CFP<sup>display</sup>, MTI-MMP-FRET biosensor|| 2007, 2008 || 1 || <ref><pubmed>17187878</pubmed></ref><ref><pubmed> 18441011</pubmed></ref>  
| [[マトリックスメタロプロテアーゼ]] ([[MMP]]) ||YFP-MSS-CFP<sup>display</sup>, MTI-MMP-FRET biosensor|| 2007, 2008 || A || <ref><pubmed>17187878</pubmed></ref><ref><pubmed> 18441011</pubmed></ref>  
|-
|-
| [[wj:第Xa因子|第Xa因子]] || ||1996 || 1 || <ref><pubmed>8707050</pubmed></ref>
| [[wj:第Xa因子|第Xa因子]] || ||1996 || A || <ref><pubmed>8707050</pubmed></ref>
|-
|-
|[[カルパイン]]活性||pYSCS|| 2000 || 1 || <ref><pubmed>10688895</pubmed></ref>
|[[カルパイン]]活性||pYSCS|| 2000 || A || <ref><pubmed>10688895</pubmed></ref>
|-
|-
| [[プレセニリン]] ||GFP-PSI-RFP|| 2009 || 3-1 || <ref><pubmed>19924286</pubmed></ref>
| [[プレセニリン]] ||GFP-PSI-RFP|| 2009 || 3-1 || <ref><pubmed>19924286</pubmed></ref>
321行目: 329行目:
|rowspan="5" | その他 ||細胞膜張力センサー ||stFRET|| 2008 || 3-1 || <ref><pubmed>18479457</pubmed></ref>
|rowspan="5" | その他 ||細胞膜張力センサー ||stFRET|| 2008 || 3-1 || <ref><pubmed>18479457</pubmed></ref>
|-
|-
| [[膜電位]] ||VSFP, Mermaid, ArcLight, VSFP-Butterfly|| 2001, 2008, 2012 || 3-1 || <ref><pubmed>11454036</pubmed></ref><ref><pubmed> 18622396</pubmed></ref><ref><pubmed> 22958819</pubmed></ref><ref><pubmed> 23868559</pubmed></ref>
| [[膜電位]] ||VSFP, Mermaid, ArcLight, VSFP-Butterfly|| 2001, 2008, 2012 || D || <ref><pubmed>11454036</pubmed></ref><ref><pubmed> 18622396</pubmed></ref><ref><pubmed> 22958819</pubmed></ref><ref><pubmed> 23868559</pubmed></ref>
|-
|-
| [[ミオシンII]] ||GSldCB|| 1998, 2006 || 3-1 || <ref><pubmed>9845076</pubmed></ref><ref><pubmed> 16939200</pubmed></ref>
| [[ミオシンII]] ||GSldCB|| 1998, 2006 || 3-1 || <ref><pubmed>9845076</pubmed></ref><ref><pubmed> 16939200</pubmed></ref>
330行目: 338行目:
|}
|}


The numbers in the Probe Design column correspond to the section number in the “Strategies of probe design” chapter of the main text. See the webpage by Dr. Michiyuki Matsuda http://www.lif.kyoto-u.ac.jp/labs/fret/e-phogemon/unifret.htm for updated information.
プローブデザインA-Gは図4に対応している。京都大学医学部松田道行による[http://www.lif.kyoto-u.ac.jp/labs/fret/phogemon/index.htm Phogemon Project] などを参考に作成。


==蛍光色素の選択==
==蛍光色素の選択==


現在、多数の遺伝子工学的に作製されたタンパク質FRETプローブにおいて、GFPの色彩変異体、シアン色蛍光タンパク質CFPと黄色蛍光タンパク質YFPのFRETペアが広範に用いられている。近年、CloverとmRuby2が開発され、より良いFRETペアであると報告されている<ref><pubmed>22961245</pubmed></ref>。FRETのアクセプターとなるが蛍光を発しないREACh, darkVenus, superREAChなども用いられる。同じ理由により、
 現在多くの場合GFPあるいはその関連タンパク質が用いられている。
蛍光寿命は、[[GFP]]は2.5nsec、YFPでは2.9nsec、mCherryでは1.5nsec程度の値を取る。蛍光寿命プローブとしてはドナーとしてmGFP、アクセプターとしてmRFPもしくはmCherryが用いられる。
 蛍光強度比イメージングの場合は、GFPの色彩変異体であるシアン色蛍光タンパク質CFPと黄色蛍光タンパク質YFPのFRETペアが広範に用いられている。CFPの中でも、Ceruleanが明るい蛍光を示すためこれを用いるべきである。YFPの変異体の中では、Venus、Ypetがよい。いずれも若干の凝集傾向が有り、これはタンパク質表面にある三つのアラニン残基のメチル基によるものとされており、それを変異させたmonomeric GFP (A206K変異体)で凝集を避ける事が出来る<ref name=ref11988576><pubmed>11988576</pubmed></ref><ref name=ref18512154><pubmed>18512154</pubmed></ref>。一方で、プロテアーゼプローブなどでは、FRETダイナミックレンジが改善するという報告もある<ref name=ref15696158><pubmed>15696158</pubmed></ref>
<ref name=ref17586775><pubmed>17586775</pubmed></ref>。CFPとYFPはいずれもGFPの変異体で殆ど同一の配列である為か、トランスジェニック動物が作りにくい事が経験的に知られている{kamioka, 2012}。
 
 近年、Clover(緑色域)とmRuby2(赤色域)がより良いFRETペアであると報告されている<ref><pubmed>22961245</pubmed></ref>
 
 一方、蛍光寿命イメージングとしてはドナーとしてmGFP、アクセプターとしてmRFPもしくはmCherryが用いられる。この場合、アクセプターの蛍光強度は問題ではないので蛍光を発しないREACh, darkVenus, superREAChなども用いられる<ref name=ref16537489><pubmed>16537489</pubmed></ref><ref name=ref18512154><pubmed>18512154</pubmed></ref><ref name=ref18302935><pubmed>18302935</pubmed></ref>。
 
==神経科学分野への応用例 ==
 1997年、宮脇らによって、CFPおよびYFPを利用した、細胞内[[カルシウム]] プローブ、カメレオンが開発され<ref><pubmed>9278050</pubmed></ref>、さらに、cAMP<ref><pubmed>10620803</pubmed></ref>, cGMP<ref><pubmed>11140757</pubmed></ref>、 リン酸化<ref><pubmed>11752449</pubmed></ref>を初めとした主要な細胞内シグナル伝達分子のFRETプローブが次々と作製され、分子のリアルタイムな活性および局在の活性の解明に大きく貢献した。


== 神経科学分野への応用  ==
 2000年初期に記憶の形成に必須なシグナル分子、Ca<sup>2+</sup>/カルモデュリン依存性タンパク質キナーゼII (CaMKII)の活性化を評価するためのFRETプローブ、 Camuiが開発された<ref><pubmed>15788767</pubmed></ref>。CaMKIIはそれまでは、一旦活性化されたらその活性が自己リン酸化により持続する事で、長期に亘る記憶に必要なシナプス反応の増強を維持すると考えられてきたが、実際にはCaMKIIの活性化は一過性である事が示された<ref name=ref19295602><pubmed>19295602</pubmed></ref>
 1997年、宮脇、Tsienらによって、CFPおよびYFPを利用した、[[Calcium]] indicator, Cameleonが開発され<ref><pubmed>9278050</pubmed></ref>、さらに、cAMP<ref><pubmed>10620803</pubmed></ref>, cGMP<ref><pubmed>11140757</pubmed></ref>, リン酸化<ref><pubmed>11752449</pubmed></ref>を初めとした主要な細胞内シグナル伝達分子のFRETプローブが次々と作製され、分子のリアルタイムな活性および局在のの活性の解明に大きく貢献した。


 [[脳神経]]分野においては、林らが、2000年初期に記憶の形成に必須なシグナル分子、[[カルシウムカルモデュリンキナーゼII]] (CaMKII)の活性化を評価するためのFRETプローブ開発し分散培養系にてCaMkIIの可視化に成功した<ref><pubmed>15788767</pubmed></ref>。1990年代後半、Svobodaらによって、2光子顕微鏡が脳神経科学に導入され、神経回路ネットワークを保持したスライスおよび個体の生きた脳の神経活動を観察可能になった。林らは、神経細胞の連結部位、シナプスの[[シナプス後膜]]([[スパイン]])において、その形態を制御するactinの重合を可視化するためのFRETプローブを開発した<ref><pubmed>15361876</pubmed></ref>。一方、脳のスライスにおいては、波長依存的な蛍光の吸収が生じるため、ドナーとアクセプターの2波長を測定する蛍光強度比を測定するよりも、蛍光の散乱、吸収によって変化しない蛍光寿命測定法が導入された。安田、Svobodaらは、蛍光寿命測定を基に、スパインの構造的変化を誘導する低分子量Gタンパク質([[Ras]][[cdc42]]、[[RhoA]])などのシグナル伝達分子の活性化の変化を観察することに成功している<ref><pubmed>19295602</pubmed></ref><ref><pubmed>18556515</pubmed></ref><ref><pubmed>21423166</pubmed></ref>。  
 一方、[[樹状突起]][[スパイン]])の形態を制御する[[アクチン]]の重合を可視化するためのFRETプローブが開発され、アクチンの重合が長期増強現象に伴い引き起こされる事、またそれが長期間維持される事が示された<ref><pubmed>15361876</pubmed></ref>。その調節の上流にある[[Rho族低分子量Gタンパク質]][[Cdc42]]、[[RhoA]]の活性も同様に維持される事が判った <ref><pubmed>19295602</pubmed></ref><ref><pubmed>18556515</pubmed></ref><ref><pubmed>21423166</pubmed></ref>。  


 個体においてもFRET測定法が導入されている。神経回路ネットワークにおける[[シナプス]]の役割を解明する目的で、[[フェレット]]の[[大脳皮質]][[視覚野]]にCaMKIIプローブを発現し、[[片眼剥奪]]によって、神経回路ネットワークに変化を起こした時のCaMKIIの活性化の変化を観測している<ref><pubmed>22160721</pubmed></ref>。また、神経活動をモニターする目的で、Knöpfelらは、膜電位プローブを開発しマウスのヒゲ刺激の入力先である[[体性感覚野]][[barrel cortex]]での入力特異的な神経の活性化を観察している<ref><pubmed>20622860</pubmed></ref>。
 個体においてもFRET測定法が導入されている。神経回路ネットワークにおける[[シナプス]]の役割を解明する目的で、[[フェレット]]の[[大脳皮質]][[視覚野]]にCaMKIIプローブを発現し、[[片眼剥奪]]によって、神経回路ネットワークに変化を起こした時のCaMKIIの活性化の変化を観測している<ref><pubmed>22160721</pubmed></ref>。また、神経活動をモニターする膜電位プローブを開発し[[マウス]]の[[洞毛]]刺激の投射先である[[体性感覚野]][[バレル皮質]]での入力特異的な神経の活性化を観察している<ref><pubmed>20622860</pubmed></ref>。


 病態との関係では、神経細胞内のカルシウム濃度を測定するために、[[オレゴングリーン]]の蛍光寿命の変化から、カルシウム濃度を測定し、アストロサイトでのカルシウム濃度が、アルツハイマー様マウスと正常マウスで違うことが報告されている<ref><pubmed>19251629</pubmed></ref>。
 病態との関係では、神経細胞内のカルシウム濃度を測定するために、[[オレゴングリーン]]の蛍光寿命の変化から、カルシウム濃度を測定し、[[アストロサイト]]でのカルシウム濃度が、[[アルツハイマー病]]モデル[[マウス]]と正常マウスで異なることが報告されている<ref><pubmed>19251629</pubmed></ref>。


 Homo-FRETも応用されている。CaMKIIは12量体を形成しているが、異方性の変化を基に、その構造中にdimerの単位が存在し、活性化に伴うdimer同士の位置関係が変化することをVogelらが明らかにしている<ref><pubmed>19339497</pubmed></ref>。  
 Homo-FRETも応用されている。CaMKIIは12量体を形成しているが、異方性の変化を基に、その構造中に二量体の単位が存在し、活性化に伴う二量体同士の位置関係が変化することが明らかにされている<ref><pubmed>19339497</pubmed></ref>。  


== 将来展望  ==
== 将来展望  ==
 脳研究は、生きたままの状態の脳の神経細胞の活動を、広範囲で、より深部で観察したり、逆に神経細胞内の超微細構造を観察する方向に移るであろう。現在、FRETを基にしたin vivoイメージングは、応答の低さ、蛍光の弱さなどの難点はあるものの、蛍光タンパク質の蛍光強度や顕微鏡の性能の改良は日進月歩であり改善されていくであろう。また、神経活動に必要なシグナル伝達を同時に観察するために、マルチカラーイメージングの試みもなされるであろう。その際には、2つの波長を必要とする蛍光強度比変化を基にするFRET測定よりも、蛍光寿命を観察するFLIM測定が適している。  
 脳研究は、生動物の脳の神経細胞の活動を、広範囲で、より深部で観察したり、逆に神経細胞内の超微細構造を観察する方向に移るであろう。現在、FRETを基にしたin vivoイメージングは、応答の低さ、蛍光の弱さなどの難点はあるものの、蛍光タンパク質の蛍光強度や顕微鏡の性能の改良は日進月歩であり改善されていくであろう。また、神経活動に必要なシグナル伝達を同時に観察するために、マルチカラーイメージングの試みもなされるであろう。その際には、2つの波長を必要とする蛍光強度比変化を基にするFRET測定よりも、蛍光寿命を観察するFLIM測定が適している。  


==外部リンク==
==外部リンク==

案内メニュー