「カテニン」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
12行目: 12行目:
}}
}}


==カテニンとは==
(イントロダクションを御願い致します)
==種類==
==種類==
 カテニンの主要な種類には、α–カテニン、β–カテニン、γ–カテニン/プラコグロビン、δ–カテニンがある。それぞれにサブタイプが存在する。
 カテニンの主要な種類には、α–カテニン、β–カテニン、γ–カテニン/プラコグロビン、δ–カテニンがある。それぞれにサブタイプが存在する。
88行目: 90行目:
カテニンはカドヘリンの細胞質領域と結合してカドヘリン・カテニン複合体を作るが、カテニンが結合しうるカドヘリンはE–, N–, VE–カドヘリン等のクラッシックカドヘリンのみである。
カテニンはカドヘリンの細胞質領域と結合してカドヘリン・カテニン複合体を作るが、カテニンが結合しうるカドヘリンはE–, N–, VE–カドヘリン等のクラッシックカドヘリンのみである。


===α–カテニン===
==α–カテニン==
 &alpha;&ndash;カテニンは&beta;&ndash;カテニンと[[アクチン]]線維とに結合する。カドヘリン接着活性は、&alpha;&ndash;カテニンによって支えられており、その役割はカドヘリン・カテニン複合体とアクチン線維との結合であると考えられている<ref name=ref4><pubmed> 1638632 </pubmed></ref>。&alpha;&ndash;カテニンが発現していなければ、カドヘリンが発現していても、接着分子としてのカドヘリンは実質的に機能しない。
 &alpha;E&ndash;カテニン、&alpha;N&ndash;カテニン、&alpha;T&ndash;カテニンがこのグループに属する。


===構造===
===発現===
 組織全般には&alpha;E&ndash;カテニンが発現し、神経系には&alpha;N&ndash;カテニン特異的に発現している。発生中の中枢神経系では、[[神経前駆細胞]]には&alpha;E&ndash;カテニンが発現しているが、それが神経細胞に[[分化]]すると&alpha;E&ndash;カテニンの発現は見られなくなり、&alpha;N&ndash;カテニンが発現するようになる<ref name=ref5><pubmed> 16543460 </pubmed></ref>。
 組織全般には&alpha;E&ndash;カテニンが発現し、神経系には&alpha;N&ndash;カテニン特異的に発現している。発生中の中枢神経系では、[[神経前駆細胞]]には&alpha;E&ndash;カテニンが発現しているが、それが神経細胞に[[分化]]すると&alpha;E&ndash;カテニンの発現は見られなくなり、&alpha;N&ndash;カテニンが発現するようになる<ref name=ref5><pubmed> 16543460 </pubmed></ref>。
===機能===
 &alpha;&ndash;カテニンは&beta;&ndash;カテニンと[[アクチン]]線維とに結合する。カドヘリン接着活性は、&alpha;&ndash;カテニンによって支えられており、その役割はカドヘリン・カテニン複合体とアクチン線維との結合であると考えられている<ref name=ref4><pubmed> 1638632 </pubmed></ref>。&alpha;&ndash;カテニンが発現していなければ、カドヘリンが発現していても、接着分子としてのカドヘリンは実質的に機能しない。


 &alpha;&ndash;カテニンは&beta;&ndash;カテニンとはN末端で結合し、C末端ではアクチン線維と結合する。このC末端のアクチン線維結合領域の重要性は、[[ショウジョウバエ]]の形態形成<ref name=ref6><pubmed> 23417122 </pubmed></ref>や[[マウス]]の発生<ref name=ref7><pubmed> 9023354 </pubmed></ref>において示されている。&alpha;&ndash;カテニンは[[ビンキュリン]]、[[エプリン]]、[[ZO&ndash;1]]、[[&alpha;アクチニン]]などのアクチン結合タンパク質とも結合するので、それらの結合を介して間接的にアクチン線維を連結している可能性もある<ref name=ref8><pubmed> 22084304 </pubmed></ref>。
 &alpha;&ndash;カテニンは&beta;&ndash;カテニンとはN末端で結合し、C末端ではアクチン線維と結合する。このC末端のアクチン線維結合領域の重要性は、[[ショウジョウバエ]]の形態形成<ref name=ref6><pubmed> 23417122 </pubmed></ref>や[[マウス]]の発生<ref name=ref7><pubmed> 9023354 </pubmed></ref>において示されている。&alpha;&ndash;カテニンは[[ビンキュリン]]、[[エプリン]]、[[ZO&ndash;1]]、[[&alpha;アクチニン]]などのアクチン結合タンパク質とも結合するので、それらの結合を介して間接的にアクチン線維を連結している可能性もある<ref name=ref8><pubmed> 22084304 </pubmed></ref>。
99行目: 106行目:
 また、&alpha;E&ndash;カテニンは、細胞間接着の機能とは別に、[[細胞増殖]]を負に制御することが知られている。細胞増殖の接触阻止に対する調節に重要な[[Hippo]][[シグナル伝達]]においては、転写制御を通じて増殖を抑制する<ref><pubmed> 22075429 </pubmed></ref>。後述するように神経系では、&alpha;N&ndash;カテニンが神経回路形成を担うシナプス形成や安定性に必要である。[[大脳皮質]]における細胞増殖、神経突起の伸長の制御を行っているという報告もある<ref><pubmed> 22535893 </pubmed></ref>。
 また、&alpha;E&ndash;カテニンは、細胞間接着の機能とは別に、[[細胞増殖]]を負に制御することが知られている。細胞増殖の接触阻止に対する調節に重要な[[Hippo]][[シグナル伝達]]においては、転写制御を通じて増殖を抑制する<ref><pubmed> 22075429 </pubmed></ref>。後述するように神経系では、&alpha;N&ndash;カテニンが神経回路形成を担うシナプス形成や安定性に必要である。[[大脳皮質]]における細胞増殖、神経突起の伸長の制御を行っているという報告もある<ref><pubmed> 22535893 </pubmed></ref>。


===&beta;&ndash;カテニン、&gamma;&ndash;カテニン===
==&beta;&ndash;カテニン、&gamma;&ndash;カテニン==
 &beta;&ndash;カテニンと&gamma;&ndash;カテニン(プラコグロビンとも呼ばれる)がこのグループに属する。両者は高い相同性(76%以上の相同性)をもつ。
===構造===
===発現===
===機能===
 &beta;&ndash;カテニンにはカドヘリン・カテニン複合体中のメンバーとしての細胞接着への必須な役割と、Wnt/&beta;&ndash;カテニンシグナルの[[転写制御因子]]としての役割とがある。&gamma;&ndash;カテニンはプラコグロビンとも呼ばれ、&beta;&ndash;カテニンと高い相同性(76%以上の相同性)をもつ。
 &beta;&ndash;カテニンにはカドヘリン・カテニン複合体中のメンバーとしての細胞接着への必須な役割と、Wnt/&beta;&ndash;カテニンシグナルの[[転写制御因子]]としての役割とがある。&gamma;&ndash;カテニンはプラコグロビンとも呼ばれ、&beta;&ndash;カテニンと高い相同性(76%以上の相同性)をもつ。


106行目: 117行目:
 ショウジョウバエの[[アルマジロ]]遺伝子は胚の体節形成に異常を示す変異体のスクリーニングから発見されWntシグナル伝達系の転写制御因子として核内においても機能することが知られていた。のちに[[哺乳類]]のカドヘリン・カテニン複合体中の&beta;&ndash;カテニンがアルマジロ遺伝子のオーソログであることが判明し、[[脊椎動物]]の&beta;&ndash;カテニンにも発生における遺伝子発現において重要な役割があることがわかった。Wntシグナルがない状態では、細胞質の&beta;&ndash;カテニン(カドヘリン・カテニン複合体中のものとは別である)は[[GSK3]]&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;&ndash;カテニンは核内へ移行し、[[TCF]]/[[LEF]]と複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref12><pubmed> 22617422 </pubmed></ref>。これは、ウニの発生を初めとし無脊椎動物、脊椎動物両方において報告されている<ref name=ref12><pubmed> 22617422 </pubmed></ref>。神経系においても、シナプス形成と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref name=ref16>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/beta-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref> <ref name=ref17><pubmed> 23377854 </pubmed></ref>。
 ショウジョウバエの[[アルマジロ]]遺伝子は胚の体節形成に異常を示す変異体のスクリーニングから発見されWntシグナル伝達系の転写制御因子として核内においても機能することが知られていた。のちに[[哺乳類]]のカドヘリン・カテニン複合体中の&beta;&ndash;カテニンがアルマジロ遺伝子のオーソログであることが判明し、[[脊椎動物]]の&beta;&ndash;カテニンにも発生における遺伝子発現において重要な役割があることがわかった。Wntシグナルがない状態では、細胞質の&beta;&ndash;カテニン(カドヘリン・カテニン複合体中のものとは別である)は[[GSK3]]&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;&ndash;カテニンは核内へ移行し、[[TCF]]/[[LEF]]と複合体を形成し、[[細胞周期]]関連因子や[[体軸]]決定因子などの標的遺伝子を活性化する<ref name=ref12><pubmed> 22617422 </pubmed></ref>。これは、ウニの発生を初めとし無脊椎動物、脊椎動物両方において報告されている<ref name=ref12><pubmed> 22617422 </pubmed></ref>。神経系においても、シナプス形成と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref name=ref16>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/beta-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref> <ref name=ref17><pubmed> 23377854 </pubmed></ref>。


===&delta;&ndash;カテニン===
==&delta;&ndash;カテニン==
 p120&ndash;カテニンと&delta;&ndash;カテニンがこのグループに属する。
===構造===
 &delta;&ndash;カテニンはそのアルマジロ反復配列で、カドヘリンの細胞膜に近接した細胞質領域と結合する。
===発現===
 &delta;&ndash;カテニンは、神経系特異的な発現が特徴で、&delta;&ndash;カテニンの局在は、樹状突起のシナプスに強く観察され、樹状突起の形態変化に寄与する。
 
===機能===
====p120&ndash;カテニン====
====p120&ndash;カテニン====
 p120&ndash;カテニンはそのアルマジロ反復配列で、カドヘリンの細胞膜に近接した細胞質領域と結合する。もともとは、強く[[チロシンリン酸化]]をうける分子として同定された<ref name=ref18><pubmed> 2469003 </pubmed></ref>。p120&ndash;カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を抑制し、細胞膜上のカドヘリン量を維持する。チロシンリン酸化はp120&ndash;カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120&ndash;カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120&ndash;カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref name=ref19><pubmed> 20371349 </pubmed></ref> <ref name=ref20><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120&ndash;カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref21><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つあるが<ref name=ref22><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120&ndash;カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref23><pubmed> 12492499 </pubmed></ref>。また、p120&ndash;カテニンは細胞膜直下のアクチン線維動態も制御している。p120&ndash;カテニンはアクチン細胞骨格動態の主要な制御因子である[[低分子量Gタンパク質]][[RhoA]]と結合し、RhoAの活性化を抑制し、一方で[[糸状仮足]]や[[葉状仮足]]の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質[[Rac]]や[[Cdc42]]を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref name=ref24><pubmed> 17194753 </pubmed></ref>。細胞質におけるRhoAとの結合はp120&ndash;カテニンのリン酸化に依存している<ref name=ref24><pubmed>17194753</pubmed></ref>が、先に述べたように、p120&ndash;カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120&ndash;カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。ラット[[海馬]]由来の培養神経細胞においても、上述したp120&ndash;カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、[[神経樹状突起]]伸長の促進やシナプス可塑性の適切な制御に寄与している<ref name=ref25><pubmed> 17936606 </pubmed></ref>。
 もともとは、強く[[チロシンリン酸化]]をうける分子として同定された<ref name=ref18><pubmed> 2469003 </pubmed></ref>。p120&ndash;カテニンは、カドヘリンとの結合を介してカドヘリンの[[エンドサイトーシス]]を抑制し、細胞膜上のカドヘリン量を維持する。チロシンリン酸化はp120&ndash;カテニンのカドヘリンとの結合解除に寄与する。このカドヘリンのp120&ndash;カテニン結合領域内には、そのエンドサイトーシスシグナルが存在し、カドヘリンにp120&ndash;カテニンが結合することによって、そのシグナルがマスクされ、その結果としてカドヘリンは細胞内に取り込まれないようになっているという機構が近年示されている<ref name=ref19><pubmed> 20371349 </pubmed></ref> <ref name=ref20><pubmed> 23071156 </pubmed></ref>。カドヘリンの接着活性がない[[wikipedia:ja:大腸癌|大腸癌]]由来の[[細胞株]]を用いた解析からは、p120&ndash;カテニンはカドヘリンと結合することで接着活性を抑制する結合因子であることが示された<ref name=ref21><pubmed> 10225956 </pubmed></ref>。カドヘリンの発現量の低下は[[wikipedia:ja:悪性腫瘍|悪性腫瘍]]組織でみられる特徴の一つあるが<ref name=ref22><pubmed> 10647931 </pubmed></ref>、そのような腫瘍組織のいくつかの種類では、p120&ndash;カテニンが細胞膜に局在できないことによってカドヘリンのエンドサイトーシスが亢進されると解釈される<ref name=ref23><pubmed> 12492499 </pubmed></ref>。また、p120&ndash;カテニンは細胞膜直下のアクチン線維動態も制御している。p120&ndash;カテニンはアクチン細胞骨格動態の主要な制御因子である[[低分子量Gタンパク質]][[RhoA]]と結合し、RhoAの活性化を抑制し、一方で[[糸状仮足]]や[[葉状仮足]]の発達につながる膜直下のアクチン細胞骨格の再編成に必要な他の低分子量Gタンパク質[[Rac]]や[[Cdc42]]を活性化することで、細胞接着形成の初期段階においてアクチン細胞骨格の再編成を促進すると考えられている<ref name=ref24><pubmed> 17194753 </pubmed></ref>。細胞質におけるRhoAとの結合はp120&ndash;カテニンのリン酸化に依存している<ref name=ref24><pubmed>17194753</pubmed></ref>が、先に述べたように、p120&ndash;カテニンのリン酸化の増加がカドヘリンの接着活性の低下に働くことを考えあわせると、p120&ndash;カテニンのリン酸化の制御は細胞接着と細胞運動の適切な均衡をとるという機構の一つになると考えられる。ラット[[海馬]]由来の培養神経細胞においても、上述したp120&ndash;カテニンのRhoA、Rac、そしてCdc42の活性制御を介してアクチン細胞骨格動態を活性化させ、[[神経樹状突起]]伸長の促進やシナプス可塑性の適切な制御に寄与している<ref name=ref25><pubmed> 17936606 </pubmed></ref>。


 p120&ndash;カテニンは、[[PLEKHA7]]タンパク質、そして[[微小管]]マイナス端に局在する[[Nezha]]タンパク質を介して[[アドへレンス・ジャンクション]]への微小管を繫ぎとめることが示されている<ref name=ref26><pubmed> 19041755 </pubmed></ref>。また、[[アフリカツメガエル]]胚では、p120&ndash;カテニンが核内で転写抑制因子[[Kaiso]]と結合し、脊椎動物の形態形成に必須なWnt/[[PCPシグナル伝達系]](Wnt/&beta;&ndash;カテニンシグナル伝達系とは違うWntシグナル)の[[xWnt11]]の遺伝子発現を活性化することが示された<ref name=ref27><pubmed> 15543138 </pubmed></ref>。しかし、p120&ndash;カテニンの核移行の分子機構(核移行の生理的な場合のトリガーの同定やp120&ndash;カテニンのリン酸化との関連など)やxWnt11以外の標的の遺伝子群についてはわかっていない点が多い<ref name=ref28><pubmed> 22583808 </pubmed></ref>。situ
 p120&ndash;カテニンは、[[PLEKHA7]]タンパク質、そして[[微小管]]マイナス端に局在する[[Nezha]]タンパク質を介して[[アドへレンス・ジャンクション]]への微小管を繫ぎとめることが示されている<ref name=ref26><pubmed> 19041755 </pubmed></ref>。また、[[アフリカツメガエル]]胚では、p120&ndash;カテニンが核内で転写抑制因子[[Kaiso]]と結合し、脊椎動物の形態形成に必須なWnt/[[PCPシグナル伝達系]](Wnt/&beta;&ndash;カテニンシグナル伝達系とは違うWntシグナル)の[[xWnt11]]の遺伝子発現を活性化することが示された<ref name=ref27><pubmed> 15543138 </pubmed></ref>。しかし、p120&ndash;カテニンの核移行の分子機構(核移行の生理的な場合のトリガーの同定やp120&ndash;カテニンのリン酸化との関連など)やxWnt11以外の標的の遺伝子群についてはわかっていない点が多い<ref name=ref28><pubmed> 22583808 </pubmed></ref>。situ
====神経系特異的な発現を示す&delta;&ndash;カテニン====
====神経系特異的な発現を示す&delta;&ndash;カテニン====
 &delta;&ndash;カテニンは、神経系特異的な発現が特徴で、&delta;&ndash;カテニンの局在は、樹状突起のシナプスに強く観察され、樹状突起の形態変化に寄与する。マウスの脳組織における免疫沈降実験から、&delta;&ndash;カテニンは[[N&ndash;カドヘリン]]と&beta;&ndash;カテニンと結合することが確認され、シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref name=ref29><pubmed> 9971746 </pubmed></ref>。また、ラット神経組織の初代培養細胞では、&delta;&ndash;カテニンはGSK3&beta;、&beta;&ndash;カテニンと複合体を形成し、&beta;&ndash;カテニンの分解を促進させる機能も有する<ref name=ref30><pubmed> 20623542 </pubmed></ref>。もともと、&delta;&ndash;カテニンは[[家族性アルツハイマー病]]の原因遺伝子である[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref31><pubmed> 9172160 </pubmed></ref>。染色体上の&delta;&ndash;カテニン遺伝子座を含む領域の欠損は、精神発達遅滞を起こすヒト遺伝病の一つであるネコ鳴き症候群患者に多くみられ、その後の&delta;&ndash;カテニンの[[ノックアウトマウス]]の解析から、&delta;&ndash;カテニンはその症候群でみられる精神発達遅滞との関連が示唆された。そのノックアウトマウスでは、[[視覚]]からの刺激に対する[[視覚野]]の応答に障害がみられ、海馬の[[短期増強]]と[[長期増強]]の異常を示す。このノックアウトマウスの発生期のシナプス形成には異常はみられず、生存可能であるが、10週齢になると、大脳皮質のシナプスの密度の減少やシナプスの維持の欠落が見られるようになる。その分子機構はまだ不明であるが、&delta;&ndash;カテニンは、シナプスの[[スパイン]]構造の維持で機能することで、正常な[[認知機能]]やそれに繋がりうる[[精神発達]]に寄与すると示唆されている<ref name=ref32><pubmed> 19403811 </pubmed></ref> 。
 マウスの脳組織における免疫沈降実験から、&delta;&ndash;カテニンは[[N&ndash;カドヘリン]]と&beta;&ndash;カテニンと結合することが確認され、シナプスにおいてカドヘリン・カテニン複合体の一員として機能することが予想される<ref name=ref29><pubmed> 9971746 </pubmed></ref>。また、ラット神経組織の初代培養細胞では、&delta;&ndash;カテニンはGSK3&beta;、&beta;&ndash;カテニンと複合体を形成し、&beta;&ndash;カテニンの分解を促進させる機能も有する<ref name=ref30><pubmed> 20623542 </pubmed></ref>。


==脳におけるカテニンの機能==
==脳におけるカテニンの機能==
130行目: 148行目:
===大脳皮質のサイズ制御===
===大脳皮質のサイズ制御===
 中枢神経系の幹/前駆細胞特異的に&alpha;E&ndash;カテニンを欠失させると、細胞間接着が形成できず、さらに細胞極性がなくなる。加えて、細胞数の増加、細胞周期の短縮、[[アポトーシス]]の減少がみられ、最終的な大脳皮質の厚みや大きさが増す。このノックアウト細胞では、大脳皮質の発生過程において細胞増殖を促進する[[ヘッジホッグ]]シグナル伝達経路が強く活性化している。以上より、ノックアウト細胞では、細胞接着の崩壊により細胞密度を物理的に感知できなくなり、細胞は低密度であると感じ続け、ヘッジホックシグナル伝達の活性化を介して細胞増殖を促進し、細胞数の増加そして大脳皮質の過形成へとつながると解釈される。正常な場合は、&alpha;E&ndash;カテニンは発生過程における細胞増殖に関わるシグナル伝達と細胞間接着の制御とをうまく連動させることで、発生時期の大脳皮質の大きさを調節していると示唆される。これは、&alpha;E&ndash;&ndash;カテニンの接着構造の制御自体だけでなく、複数のシグナル伝達系を仲介するという新たな機能であると議論されている<ref name=ref5 />。
 中枢神経系の幹/前駆細胞特異的に&alpha;E&ndash;カテニンを欠失させると、細胞間接着が形成できず、さらに細胞極性がなくなる。加えて、細胞数の増加、細胞周期の短縮、[[アポトーシス]]の減少がみられ、最終的な大脳皮質の厚みや大きさが増す。このノックアウト細胞では、大脳皮質の発生過程において細胞増殖を促進する[[ヘッジホッグ]]シグナル伝達経路が強く活性化している。以上より、ノックアウト細胞では、細胞接着の崩壊により細胞密度を物理的に感知できなくなり、細胞は低密度であると感じ続け、ヘッジホックシグナル伝達の活性化を介して細胞増殖を促進し、細胞数の増加そして大脳皮質の過形成へとつながると解釈される。正常な場合は、&alpha;E&ndash;カテニンは発生過程における細胞増殖に関わるシグナル伝達と細胞間接着の制御とをうまく連動させることで、発生時期の大脳皮質の大きさを調節していると示唆される。これは、&alpha;E&ndash;&ndash;カテニンの接着構造の制御自体だけでなく、複数のシグナル伝達系を仲介するという新たな機能であると議論されている<ref name=ref5 />。
==疾患との関わり==
(他に特記する事があればご指摘下さい)
 もともと、&delta;&ndash;カテニンは[[家族性アルツハイマー病]]の原因遺伝子である[[プレセニリン1]]の相互作用因子の解析から同定された<ref name=ref31><pubmed> 9172160 </pubmed></ref>。染色体上の&delta;&ndash;カテニン遺伝子座を含む領域の欠損は、[[精神発達遅滞]]を起こすヒト遺伝病の一つである[[ネコ鳴き症候群患者]]に多くみられ、その後の&delta;&ndash;カテニンの[[ノックアウトマウス]]の解析から、&delta;&ndash;カテニンはその症候群でみられる精神発達遅滞との関連が示唆された。そのノックアウトマウスでは、[[視覚]]からの刺激に対する[[視覚野]]の応答に障害がみられ、海馬の[[短期増強]]と[[長期増強]]の異常を示す。このノックアウトマウスの発生期のシナプス形成には異常はみられず、生存可能であるが、10週齢になると、大脳皮質のシナプスの密度の減少やシナプスの維持の欠落が見られるようになる。その分子機構はまだ不明であるが、&delta;&ndash;カテニンは、シナプスの[[スパイン]]構造の維持で機能することで、正常な[[認知機能]]やそれに繋がりうる[[精神発達]]に寄与すると示唆されている<ref name=ref32><pubmed> 19403811 </pubmed></ref> 。


==関連項目==
==関連項目==
135行目: 157行目:
*[[カドヘリン]]
*[[カドヘリン]]
*[[細胞骨格]]
*[[細胞骨格]]
*[[Wnt]]
*[[GSK3&beta;]]


==参考文献==
==参考文献==
<references/>
<references/>

案内メニュー