9,444
回編集
細 (→注釈) |
細編集の要約なし |
||
13行目: | 13行目: | ||
== 基本構造 == | == 基本構造 == | ||
[[image:抑制性シナプス1.png|thumb| | [[image:抑制性シナプス1.png|thumb|350px|'''図1.Gray II型シナプス(対称性シナプス)'''<br>矢印はシナプス前終末側から抑制性シナプスを示している。SynapseWeb '''※使用許諾未取得''']] | ||
多くの抑制性シナプスは、形態学的分類におけるGray Ⅱ型シナプス(対称性シナプス)に相当する(図1)。抑制性シナプス前終末およびシナプス後膜を捉えた電子顕微鏡像によると、Gray I型シナプス(対称性シナプス)とは異なり顕著な電子高密度構造は認められない<ref name=ref1><pubmed>13829103</pubmed></ref>。また、Gray I型シナプスに比べてシナプス間隙(synaptic cleft)が狭く、シナプス小胞が楕円形(扁平)である<ref name=ref2>'''E.R.Kandel, J.H.Schwartz, T.M.Jessell, S.A.Siegelbaum, & A.J.Hudspeth (Eds.)''' <br>Principles of Neural Science, Fifth Edition. <br>2012, ''McGraw-Hill Professional'', New York, pp.211-4.<br>ISBN 978-0071390118</ref>。Gray II型シナプスは、主に樹状突起シャフト部や細胞体に形成されるが、棘突起(スパイン)を標的とするGABAを含んだシナプス前終末も存在する<ref name=ref3><pubmed>1330121</pubmed></ref> <ref name=ref4><pubmed> 17267569</pubmed></ref>。 | 多くの抑制性シナプスは、形態学的分類におけるGray Ⅱ型シナプス(対称性シナプス)に相当する(図1)。抑制性シナプス前終末およびシナプス後膜を捉えた電子顕微鏡像によると、Gray I型シナプス(対称性シナプス)とは異なり顕著な電子高密度構造は認められない<ref name=ref1><pubmed>13829103</pubmed></ref>。また、Gray I型シナプスに比べてシナプス間隙(synaptic cleft)が狭く、シナプス小胞が楕円形(扁平)である<ref name=ref2>'''E.R.Kandel, J.H.Schwartz, T.M.Jessell, S.A.Siegelbaum, & A.J.Hudspeth (Eds.)''' <br>Principles of Neural Science, Fifth Edition. <br>2012, ''McGraw-Hill Professional'', New York, pp.211-4.<br>ISBN 978-0071390118</ref>。Gray II型シナプスは、主に樹状突起シャフト部や細胞体に形成されるが、棘突起(スパイン)を標的とするGABAを含んだシナプス前終末も存在する<ref name=ref3><pubmed>1330121</pubmed></ref> <ref name=ref4><pubmed> 17267569</pubmed></ref>。 | ||
27行目: | 27行目: | ||
===シナプス後部(ポストシナプス)=== | ===シナプス後部(ポストシナプス)=== | ||
[[image:抑制性シナプス2.png|thumb| | [[image:抑制性シナプス2.png|thumb|350px|'''図2.抑制性シナプスを構成する分子'''<br>(GABA:ガンマアミノ酪酸、GAD67:グルタミン酸脱炭酸酵素67、GAD65:グルタミン酸脱炭酸酵素65、VIAAT(VGAT):小胞抑制性アミノ酸輸送体(小胞GABA輸送体)、SHMT:セリンヒドロキシメチルトランスフェラーゼ)]] | ||
シナプス後膜にはGABA<sub>A</sub>受容体やグリシン受容体などのイオンチャネルが集積し、GABA<sub>B</sub>受容体も存在している。シナプス前終末から開口放出されたGABAやグリシンなどの神経伝達物質は、それぞれに対応した受容体に結合する。抑制性神経伝達物質で開くClイオンチャネルはGABA<sub>A</sub>受容体およびグリシン受容体があり、これらは各々複数のサブタイプを持っている<ref name=ref18><pubmed>7516126</pubmed></ref> <ref name=ref19><pubmed>15383648</pubmed></ref>。これらのイオンチャネル型受容体は陰イオンを選択的に透過させるチャネル構造を持ち、活性化に伴ってClイオンの透過性(コンダクタンス)<sup>注3</sup>を上昇させる。 | シナプス後膜にはGABA<sub>A</sub>受容体やグリシン受容体などのイオンチャネルが集積し、GABA<sub>B</sub>受容体も存在している。シナプス前終末から開口放出されたGABAやグリシンなどの神経伝達物質は、それぞれに対応した受容体に結合する。抑制性神経伝達物質で開くClイオンチャネルはGABA<sub>A</sub>受容体およびグリシン受容体があり、これらは各々複数のサブタイプを持っている<ref name=ref18><pubmed>7516126</pubmed></ref> <ref name=ref19><pubmed>15383648</pubmed></ref>。これらのイオンチャネル型受容体は陰イオンを選択的に透過させるチャネル構造を持ち、活性化に伴ってClイオンの透過性(コンダクタンス)<sup>注3</sup>を上昇させる。 | ||
38行目: | 38行目: | ||
===発達期および傷害回復期におけるGABA・グリシンに対する応答変化=== | ===発達期および傷害回復期におけるGABA・グリシンに対する応答変化=== | ||
[[image:抑制性シナプス3.png|thumb| | [[image:抑制性シナプス3.png|thumb|350px|'''図3.発達に伴うGABA応答の変化'''<br>(<ref name=ref30><pubmed> 17928584</pubmed></ref>より '''※使用許諾未取得''']] | ||
GABA<sub>A</sub>受容体やグリシン受容体のチャネルを流れるClイオンの向きと量は、細胞内外におけるClイオンの濃度勾配と膜電位に依存している<ref name=ref29><pubmed>11733521</pubmed></ref>。そのため、細胞内Clイオン濃度が高い状態である幼若期のニューロンでは、GABAA受容体(もしくはグリシン受容体)の活性化に伴ってClイオンの流出をもたらし、脱分極することも知られている<ref name=ref30 />(図3)。 | GABA<sub>A</sub>受容体やグリシン受容体のチャネルを流れるClイオンの向きと量は、細胞内外におけるClイオンの濃度勾配と膜電位に依存している<ref name=ref29><pubmed>11733521</pubmed></ref>。そのため、細胞内Clイオン濃度が高い状態である幼若期のニューロンでは、GABAA受容体(もしくはグリシン受容体)の活性化に伴ってClイオンの流出をもたらし、脱分極することも知られている<ref name=ref30 />(図3)。 | ||
64行目: | 64行目: | ||
==抑制性シナプスにおける長期増強(iLTP)と長期抑圧(iLTD)== | ==抑制性シナプスにおける長期増強(iLTP)と長期抑圧(iLTD)== | ||
[[image:抑制性シナプス4.png|thumb| | [[image:抑制性シナプス4.png|thumb|350px|'''図4.プレシナプスによる抑制性LTP(iLTP)とLTD(iLTD)モデル'''<br>((a)内因性カンナビノイド(eCB)を介したiLTD, (b)脳由来神経成長因子(BDNF)を介したiLTP, (c)一酸化窒素(NO)を介したiLTP, (d)プレシナプスのNMDA受容体を介したiLTPおよびiLTD<ref name=ref55><pubmed>21334194</pubmed></ref> '''※使用許諾未取得''']] | ||
長期増強(long-term potentiation:LTP)と長期抑圧(long-term depression:LTD)は、刺激の頻度とタイミングによって、その後のシナプス伝達効率の変化が長時間に渡って持続する現象である。前者は伝達効率が上昇する一方、後者は伝達効率が減少する。このLTPとLTDは興奮性シナプスにおいてよく知られているが、抑制性シナプスにおいても生じることが報告されている(iLTP/iLTD)<ref name=ref50><pubmed>2882427</pubmed></ref> <ref name=ref51><pubmed>1729715</pubmed></ref> <ref name=ref52><pubmed>1313949</pubmed></ref> <ref name=ref53><pubmed>8103683</pubmed></ref>。いずれの現象についても、前シナプスと後シナプスそれぞれにおける様々な機序によって生じることが報告されている<ref name=ref54><pubmed>12392931</pubmed></ref>。前シナプスについては、内因性カンナビノイド、脳由来神経成長因子(BDNF)、一酸化窒素(NO)などの逆行性シグナルや神経前終末のNMDA受容体を介して、伝達物質の放出確率を調節するメカニズムが考えられている(図4)。一方、後シナプスについては、GABARAPなど受容体の輸送に関わる分子やGABA<sub>A</sub>受容体自体のリン酸化‐脱リン酸化によって、シナプスにおける受容体の数や局在、イオン透過性などの構造的・機能的修飾が生じることが報告されている<ref name=ref55 />。また、この他にはKCC2やNKCC1などの細胞内Clイオン濃度調節機構への作用によって細胞内Clイオン濃度が変化し、その結果GABAやグリシンによる応答の振幅が変化することも示唆されている<ref name=ref56><pubmed>16837578</pubmed></ref>。 | 長期増強(long-term potentiation:LTP)と長期抑圧(long-term depression:LTD)は、刺激の頻度とタイミングによって、その後のシナプス伝達効率の変化が長時間に渡って持続する現象である。前者は伝達効率が上昇する一方、後者は伝達効率が減少する。このLTPとLTDは興奮性シナプスにおいてよく知られているが、抑制性シナプスにおいても生じることが報告されている(iLTP/iLTD)<ref name=ref50><pubmed>2882427</pubmed></ref> <ref name=ref51><pubmed>1729715</pubmed></ref> <ref name=ref52><pubmed>1313949</pubmed></ref> <ref name=ref53><pubmed>8103683</pubmed></ref>。いずれの現象についても、前シナプスと後シナプスそれぞれにおける様々な機序によって生じることが報告されている<ref name=ref54><pubmed>12392931</pubmed></ref>。前シナプスについては、内因性カンナビノイド、脳由来神経成長因子(BDNF)、一酸化窒素(NO)などの逆行性シグナルや神経前終末のNMDA受容体を介して、伝達物質の放出確率を調節するメカニズムが考えられている(図4)。一方、後シナプスについては、GABARAPなど受容体の輸送に関わる分子やGABA<sub>A</sub>受容体自体のリン酸化‐脱リン酸化によって、シナプスにおける受容体の数や局在、イオン透過性などの構造的・機能的修飾が生じることが報告されている<ref name=ref55 />。また、この他にはKCC2やNKCC1などの細胞内Clイオン濃度調節機構への作用によって細胞内Clイオン濃度が変化し、その結果GABAやグリシンによる応答の振幅が変化することも示唆されている<ref name=ref56><pubmed>16837578</pubmed></ref>。 |