「音源定位」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
23行目: 23行目:
 [[動物]]は主にITDおよびILDの情報を検出することで水平方向の音源定位を行っていると考えられている。他に音源定位に関与する聴覚情報としては、各周波数成分の相対強度や[[耳介]]による変化の程度等が上げられ、特に哺乳類においては上下方向や前後方向の識別に重要だと考えられている <ref>'''Blauert J.'''<br>“Spatial hearing with one sound source” in “Spatial hearing: The psychophysics of human sound localization”<br>''Cambridge, MA: MIT Press'' :1997</ref>。ヒトも含めた動物はそうした様々な音の情報を統合することで音源の位置を特定している。実際に[[wj:純音|純音]]の場合や反響の起こるような環境下では音源定位の精度は落ちる。
 [[動物]]は主にITDおよびILDの情報を検出することで水平方向の音源定位を行っていると考えられている。他に音源定位に関与する聴覚情報としては、各周波数成分の相対強度や[[耳介]]による変化の程度等が上げられ、特に哺乳類においては上下方向や前後方向の識別に重要だと考えられている <ref>'''Blauert J.'''<br>“Spatial hearing with one sound source” in “Spatial hearing: The psychophysics of human sound localization”<br>''Cambridge, MA: MIT Press'' :1997</ref>。ヒトも含めた動物はそうした様々な音の情報を統合することで音源の位置を特定している。実際に[[wj:純音|純音]]の場合や反響の起こるような環境下では音源定位の精度は落ちる。


==音源定位に関わる脳幹神経回路==
==ITD検出〜Jeffressモデル〜==
[[Image:ongenteii_fig4.png|thumb|right|300px|'''図1. ITD 検出における神経回路モデル''' <br />
'''(a)''' Jeffress により提案された遅延線回路モデル。 <br />
'''(b)''' Jeffress モデルで想定される細胞ごとの発火確率の分布。細胞ごとに異なるITD に応答することでITD は細胞の位置としてコードされる。]]
 
 上記の聴覚情報のうちITD検出を実現する神経回路機構としては、[[w:Lloyd A. Jeffress|Lloyd A. Jeffress]]が1948年に当時の心理物理学データを説明する為に提唱した[[Jeffressモデル]]がよく知られている<ref><pubmed>18904764</pubmed></ref>('''図4''')。このモデルは一列に並んだ[[同時検出器]]と[[遅延線回路]](delay line)と呼ばれる配線様式を持った両側からの神経投射で構成される。このような回路構成により、両側からの信号入力が同時刻に到達する[[同時検出器細胞]]の位置がITDに対応して変化することで、ITDは発火する同時検出器の位置として符号化される。
 
== 哺乳動物 ==
===音源定位に関わる脳幹神経回路===
[[Image:ongenteii_fig2.png|thumb|right|300px|'''図2. 哺乳類における聴覚情報処理の経路''' <br />
[[Image:ongenteii_fig2.png|thumb|right|300px|'''図2. 哺乳類における聴覚情報処理の経路''' <br />
聴覚情報は対側のIC に投射した後、高位聴覚中枢へと伝えられる。<br />
聴覚情報は対側のIC に投射した後、高位聴覚中枢へと伝えられる。<br />
41行目: 49行目:
 耳介による周波数スペクトルの変化は[[背側蝸牛神経核]](dorsal cochlear nucleus: DCN)で検出されると考えられている <ref name=young2001>'''Young E.D., Davis K.A.''' <br>“Circuitry and functions of dorsal cochlear nucleus”, in “Integrative functions of the mammalian auditory pathway”<br>Oertel D., Popper A.N., Fay R.R., Eds. :2001</ref>。
 耳介による周波数スペクトルの変化は[[背側蝸牛神経核]](dorsal cochlear nucleus: DCN)で検出されると考えられている <ref name=young2001>'''Young E.D., Davis K.A.''' <br>“Circuitry and functions of dorsal cochlear nucleus”, in “Integrative functions of the mammalian auditory pathway”<br>Oertel D., Popper A.N., Fay R.R., Eds. :2001</ref>。


==ITD検出〜Jeffressモデル〜==
===ITD検出===
[[Image:ongenteii_fig4.png|thumb|right|300px|'''図1. ITD 検出における神経回路モデル''' <br />
'''(a)''' Jeffress により提案された遅延線回路モデル。 <br />
'''(b)''' Jeffress モデルで想定される細胞ごとの発火確率の分布。細胞ごとに異なるITD に応答することでITD は細胞の位置としてコードされる。]]
 
 上記の聴覚情報のうちITD検出を実現する神経回路機構としては、[[w:Lloyd A. Jeffress|Lloyd A. Jeffress]]が1948年に当時の心理物理学データを説明する為に提唱した[[Jeffressモデル]]がよく知られている<ref><pubmed>18904764</pubmed></ref>('''図4''')。このモデルは一列に並んだ[[同時検出器]]と[[遅延線回路]](delay line)と呼ばれる配線様式を持った両側からの神経投射で構成される。このような回路構成により、両側からの信号入力が同時刻に到達する[[同時検出器細胞]]の位置がITDに対応して変化することで、ITDは発火する同時検出器の位置として符号化される。
 
==哺乳類でのITD検出==
 哺乳類において始めにITD検出を行う[[神経核]]は内側上オリーブ核である。内側上オリーブ核細胞は内側と外側の両極に分枝した樹状突起をもつ。外側[[樹状突起]]には同側の、内側樹状突起には対側の前腹側蝸牛核からの投射[[軸索]]が[[シナプス]]を形成し細胞体での同時検出が行われる<ref name=grothe2010><pubmed>20664077</pubmed></ref>。
 哺乳類において始めにITD検出を行う[[神経核]]は内側上オリーブ核である。内側上オリーブ核細胞は内側と外側の両極に分枝した樹状突起をもつ。外側[[樹状突起]]には同側の、内側樹状突起には対側の前腹側蝸牛核からの投射[[軸索]]が[[シナプス]]を形成し細胞体での同時検出が行われる<ref name=grothe2010><pubmed>20664077</pubmed></ref>。


55行目: 56行目:
 さらに[[wj:スナネズミ|スナネズミ]]を用いた最近の研究が示すところによると、ITD応答曲線のピークは200-300マイクロ秒ほど反対側が先行する方向にずれた位置に集中しているという報告もある<ref><pubmed>12037566</pubmed></ref>('''図4''')。つまりスナネズミにおいてはdelay lineが存在しないことが推測され、必ずしもJeffressモデルに合致しない動物も存在するようである。このような動物の内側上オリーブ核においては、生理的な範囲では神経活動とITDが一義的に対応し、多くの内側上オリーブ核細胞は音源の位置が対側へ向かうほど発火確率を上げる。このような所見から、音源の位置による内側上オリーブ核細胞群の発火頻度変化を上位神経核が総合的に判断することでITD検出を行うというモデルも提唱されている<ref name=grothe2010/>。
 さらに[[wj:スナネズミ|スナネズミ]]を用いた最近の研究が示すところによると、ITD応答曲線のピークは200-300マイクロ秒ほど反対側が先行する方向にずれた位置に集中しているという報告もある<ref><pubmed>12037566</pubmed></ref>('''図4''')。つまりスナネズミにおいてはdelay lineが存在しないことが推測され、必ずしもJeffressモデルに合致しない動物も存在するようである。このような動物の内側上オリーブ核においては、生理的な範囲では神経活動とITDが一義的に対応し、多くの内側上オリーブ核細胞は音源の位置が対側へ向かうほど発火確率を上げる。このような所見から、音源の位置による内側上オリーブ核細胞群の発火頻度変化を上位神経核が総合的に判断することでITD検出を行うというモデルも提唱されている<ref name=grothe2010/>。


==ILD検出==
===ILD検出===
 ILDの検出は外側上オリーブ核において、左右の入力の強度差を検出することで行われる。対側前腹側蝸牛核からの入力は内側台形体核を介してグリシン性の抑制性シナプス入力としてLSOに至る('''図3''')。そこで同側前腹側蝸牛核からの興奮性シナプス入力と比較され、外側上オリーブ核細胞はILDに応じて発火頻度を変える。実際に外側上オリーブ核の多くの細胞は左右同じ強度の音刺激を与えた時にはほとんど興奮せず、反対側への音刺激強度が減少すると発火頻度は上昇する。つまり外側上オリーブ核の神経細胞は正面から反対側方向への音源のずれを検出している<ref>'''Yin T.C.'''<br>“Neural mechanisms of encoding binaural localization cues”, in “Integrative functions of the mammalian auditory pathway”<br> Oertel D., Popper A.N., Fay R.R., Eds. :2001</ref>。この情報は頭の比較的小さな動物([[wj:コウモリ|コウモリ]]、[[マウス]]など)で発達している。
 ILDの検出は外側上オリーブ核において、左右の入力の強度差を検出することで行われる。対側前腹側蝸牛核からの入力は内側台形体核を介してグリシン性の抑制性シナプス入力としてLSOに至る('''図3''')。そこで同側前腹側蝸牛核からの興奮性シナプス入力と比較され、外側上オリーブ核細胞はILDに応じて発火頻度を変える。実際に外側上オリーブ核の多くの細胞は左右同じ強度の音刺激を与えた時にはほとんど興奮せず、反対側への音刺激強度が減少すると発火頻度は上昇する。つまり外側上オリーブ核の神経細胞は正面から反対側方向への音源のずれを検出している<ref>'''Yin T.C.'''<br>“Neural mechanisms of encoding binaural localization cues”, in “Integrative functions of the mammalian auditory pathway”<br> Oertel D., Popper A.N., Fay R.R., Eds. :2001</ref>。この情報は頭の比較的小さな動物([[wj:コウモリ|コウモリ]]、[[マウス]]など)で発達している。


==高位聴覚経路での統合==
===高位聴覚経路での統合===
 外側上オリーブ核、内側上オリーブ核で抽出されたそれぞれの情報は[[外側毛帯]]および[[下丘]]へと投射する('''図2''')。これらの神経核では情報の先鋭化あるいは統合が行われ音源定位に利用されると考えられている。実際に下丘においては特定の方向から来た音にのみ応答する細胞が存在することが報告されている<ref>'''Semple M.N., Aitkin L.M., Calford M.B., Pettigrew J.D., Phillips D.P.'''<br>Spatial responsive fields in the cat inferior colliculus<br>''Hear. Res., 10; 203-215'' :1983</ref>。
 外側上オリーブ核、内側上オリーブ核で抽出されたそれぞれの情報は[[外側毛帯]]および[[下丘]]へと投射する('''図2''')。これらの神経核では情報の先鋭化あるいは統合が行われ音源定位に利用されると考えられている。実際に下丘においては特定の方向から来た音にのみ応答する細胞が存在することが報告されている<ref>'''Semple M.N., Aitkin L.M., Calford M.B., Pettigrew J.D., Phillips D.P.'''<br>Spatial responsive fields in the cat inferior colliculus<br>''Hear. Res., 10; 203-215'' :1983</ref>。


65行目: 66行目:
 下丘の細胞は[[上丘]]へも神経投射を行うことが知られている。上丘は視覚による空間定位に重要な領域であるが、聴覚情報による空間マップも上丘において形成されることが報告されている<ref><pubmed>7110344</pubmed></ref>。上丘の細胞からは脳幹や[[脊髄]]への投射が認められ、空間情報と協調した[[眼球運動]]や[[頭位運動]]に寄与していると考えられている。
 下丘の細胞は[[上丘]]へも神経投射を行うことが知られている。上丘は視覚による空間定位に重要な領域であるが、聴覚情報による空間マップも上丘において形成されることが報告されている<ref><pubmed>7110344</pubmed></ref>。上丘の細胞からは脳幹や[[脊髄]]への投射が認められ、空間情報と協調した[[眼球運動]]や[[頭位運動]]に寄与していると考えられている。


==鳥類における音源定位==
== 鳥類 ==
===鳥類における音源定位===
 ITD、ILDを用いた音源定位について[[wj:メンフクロウ|メンフクロウ]]を用いて特に詳しく調べられている。メンフクロウにおいても左右方向の音源の位置はITDとしてとらえられる。メンフクロウにおいて特異な点は、ITD検出に高周波音も利用することと、[[外耳道]]開口部の高さが左右で異なっており上下方向の音源の位置をILDとして捉え易いことである。メンフクロウはITDとILDの情報を下丘において統合する。
 ITD、ILDを用いた音源定位について[[wj:メンフクロウ|メンフクロウ]]を用いて特に詳しく調べられている。メンフクロウにおいても左右方向の音源の位置はITDとしてとらえられる。メンフクロウにおいて特異な点は、ITD検出に高周波音も利用することと、[[外耳道]]開口部の高さが左右で異なっており上下方向の音源の位置をILDとして捉え易いことである。メンフクロウはITDとILDの情報を下丘において統合する。


 下丘では周波数統合によって各情報の先鋭化が起こることが分かっている。さらに下丘の外側核においてITD情報とILD情報を統合することで、三次元空間の特定の位置に応答する細胞が規則的に配列した構造、つまり聴覚情報を元にした空間マップが形成される。このような神経情報処理を行うことで、メンフクロウは三次元空間での正確な音源の位置を特定でき、暗闇でも聴覚情報を手がかりに獲物を捕らえることができると考えられている<ref><pubmed>14527266</pubmed></ref>。
 下丘では周波数統合によって各情報の先鋭化が起こることが分かっている。さらに下丘の外側核においてITD情報とILD情報を統合することで、三次元空間の特定の位置に応答する細胞が規則的に配列した構造、つまり聴覚情報を元にした空間マップが形成される。このような神経情報処理を行うことで、メンフクロウは三次元空間での正確な音源の位置を特定でき、暗闇でも聴覚情報を手がかりに獲物を捕らえることができると考えられている<ref><pubmed>14527266</pubmed></ref>。


==鳥類でのITD検出==
===ITD検出===
 [[鳥類]]では、脳幹に存在する[[層状核]](nucleus laminaris: NL)がJeffressモデルにおける同時検出器に相当する神経核である。メンフクロウや[[wj:ニワトリ|ニワトリ]]で特に詳細な研究がなされており、実際に層状核から細胞外記録を行いながら左右の耳に与える音刺激の時間差を変化させると、神経細胞の発火頻度は時間差に応じて変化する。
 [[鳥類]]では、脳幹に存在する[[層状核]](nucleus laminaris: NL)がJeffressモデルにおける同時検出器に相当する神経核である。メンフクロウや[[wj:ニワトリ|ニワトリ]]で特に詳細な研究がなされており、実際に層状核から細胞外記録を行いながら左右の耳に与える音刺激の時間差を変化させると、神経細胞の発火頻度は時間差に応じて変化する。


案内メニュー