「軸索」の版間の差分

ナビゲーションに移動 検索に移動
77 バイト追加 、 2021年6月14日 (月)
138行目: 138行目:


==軸索における活動電位の伝導-興奮伝導-の仕組み==
==軸索における活動電位の伝導-興奮伝導-の仕組み==
 軸索のような一様な径の管状の細胞膜に囲まれた突起中の細胞質に与えられた刺激電流による電位変化(電気緊張性電位)は海底ケーブルにおける電気伝導を記述するケーブル方程式と同様の電気的特性を示す。すなわち電位変化は刺激電流の注入箇所から離れるにつれて指数関数的に減少する。突起が細く、膜抵抗が低いほどこの減衰は著しい。軸索基部で発生する活動電位は静止膜の時定数と比較して短く、軸索のケーブル特性だけで軸索末端まで信号を送り届けること、すなわち興奮伝導は不可能である。このため、軸索には活動電位を伝える、興奮伝導のための特別な仕組みが存在する。軸索起始部における活動電位発生時には、同部において電位依存性ナトリウムチャネルの開放による内向き電流が生じる。軸索起始部における通常の活動電位の発火では、より末梢側の軸索膜が、興奮部に由来する外向き電流で刺激され、脱分極、興奮し、新たに活動電位を発生する。この新たな活動電位が同部において内向き電流を引き起こし、その近傍で外向き電流が発生する。その結果、同部より更に軸索末端側の軸索膜が新たに脱分極する。他方、興奮部より細胞体側では、興奮後しばらくは電位依存性ナトリウムチャネルが不活化状態にあり、電位依存性カリウムチャネルの開放により膜が再分極するために再度興奮することはない。このため、活動電位は細胞体から軸索末端側へ一方向性に進行する。伝導の速さは興奮部位の電位依存性チャネルの密度・開閉の速さと、静止部軸索の入力抵抗とのバランスで決まる。
 軸索のような一様な径の管状の[[細胞膜]]に囲まれた突起中の細胞質に与えられた刺激電流による電位変化([[電気緊張性電位]])は海底ケーブルにおける電気伝導を記述するケーブル方程式と同様の電気的特性を示す。すなわち電位変化は刺激電流の注入箇所から離れるにつれて指数関数的に減少する。突起が細く、膜抵抗が低いほどこの減衰は著しい。軸索基部で発生する[[活動電位]]は[[静止膜]]の時定数と比較して短く、軸索のケーブル特性だけで軸索末端まで信号を送り届けること、すなわち興奮伝導は不可能である。このため、軸索には活動電位を伝える、興奮伝導のための特別な仕組みが存在する。
 
 軸索起始部における活動電位発生時には、同部において[[電位依存性ナトリウムチャネル]]の開口による内向き電流が生じる。軸索起始部における通常の活動電位の発火では、より末梢側の軸索膜が、興奮部に由来する外向き電流で刺激され、脱分極、興奮し、新たに活動電位を発生する。この新たな活動電位が同部において内向き電流を引き起こし、その近傍で外向き電流が発生する。その結果、同部より更に軸索末端側の軸索膜が新たに脱分極する。他方、興奮部より[[細胞体]]側では、興奮後しばらくは電位依存性ナトリウムチャネルが不活化状態にあり、[[電位依存性カリウムチャネル]]の開放により膜が再分極するために再度興奮することはない。このため、活動電位は細胞体から軸索末端側へ一方向性に進行する。伝導の速さは興奮部位の[[電位依存性チャネル]]の密度・開閉の速さと、静止部軸索の入力抵抗とのバランスで決まる。
 
 このように、興奮伝導は、[[無髄線維|無髄軸索]]の場合には軸索に沿って連続的に伝播する。軸索が[[髄鞘]]で被覆される[[有髄線維|有髄軸索]]の場合、被覆された部分の膜抵抗は高く、膜容量は小さい。髄鞘による被覆が途切れる[[ランヴィエ絞輪]]部には電位依存性ナトリウムチャネルが高密度に局在し、カリウムチャネルも絞輪部近接部に存在するため、有髄軸索における興奮伝導は、絞輪部から隣接する絞輪部へ跳び跳びに、極めて高速におこる。この伝導様式を跳躍伝導と呼ぶ<ref>'''Tasaki I. (1959).''' <br>"Conduction of the nerve impulse" ''Handbook of Physiology'', Section 1, 75</ref>。隣接する絞輪部間の距離は、髄鞘で被覆される部分の膜容量と軸索の太さの兼ね合いで至適値が決まり、通常軸索外径の100倍程度である。


 このように、興奮伝導は、無髄軸索の場合には軸索に沿って連続的に伝播する。軸索が髄鞘で被覆される有髄軸索の場合、被覆された部分の膜抵抗は高く、膜容量は小さい。髄鞘による被覆が途切れるランヴィエ絞輪部には電位依存性ナトリウムチャネルが高密度に局在し、カリウムチャネルも絞輪部近接部に存在するため、有髄軸索における興奮伝導は、絞輪部から隣接する絞輪部へ跳び跳びに、極めて高速におこる。この伝導様式を跳躍伝導と呼ぶ<ref>'''Tasaki I. (1959).''' <br>
"Conduction of the nerve impulse" ''Handbook of Physiology'', Section 1, 75</ref>。隣接する絞輪部間の距離は、髄鞘で被覆される部分の膜容量と軸索の太さの兼ね合いで至適値が決まり、通常軸索外径の100倍程度である。
==末梢神経軸索の太さと伝導速度による分類==
==末梢神経軸索の太さと伝導速度による分類==
 無髄軸索の興奮伝導の速さは軸索半径の平方根に比例する。有髄軸索の跳躍伝導の場合、その速さは軸索半径にほぼ比例する。一般に無髄軸索より有髄軸索の方が太く、伝導速度も大きい。有髄軸索の中では径が大きいものほど伝導は速い。末梢神経の軸索は接続する効果器、受容器によって、有髄か無髄か、径はどの程度かが大まかに決まっており、古くから髄鞘の有無、径の太さ、伝導速度の観点から下表のように分類されてきた。ローマ数字(Lloyd)と文字(Erlanger, Gasser)の分類の間で基準となった動物種や接続する効果器、受容器には相違があるが、しばしば併用される。
 無髄軸索の興奮伝導の速さは軸索半径の平方根に比例する。有髄軸索の跳躍伝導の場合、その速さは軸索半径にほぼ比例する。一般に無髄軸索より有髄軸索の方が太く、伝導速度も大きい。有髄軸索の中では径が大きいものほど伝導は速い。末梢神経の軸索は接続する効果器、受容器によって、有髄か無髄か、径はどの程度かが大まかに決まっており、古くから髄鞘の有無、径の太さ、伝導速度の観点から下表のように分類されてきた。ローマ数字(Lloyd)と文字(Erlanger, Gasser)の分類の間で基準となった動物種や接続する効果器、受容器には相違があるが、しばしば併用される。

案内メニュー