16,039
回編集
細 (→ブリッグス・ホールデンの式) |
細 (→非競合阻害) |
||
166行目: | 166行目: | ||
===非競合阻害=== | ===非競合阻害=== | ||
(1)の反応スキームにおいて阻害剤<math>I</math> | (1)の反応スキームにおいて阻害剤<math>I</math>と基質<math>S</math>が互いに異なる部位に独立に結合し、互いの結合に影響を及ぼさないような場合、これを非競合阻害(非拮抗阻害:noncompetitive inhibition)と呼ぶ。この場合、(1)(19)の反応スキームに加えて | ||
<br> <math>ES + I {\rightleftarrows} ESI</math> (27) | <br> <math>ES + I {\rightleftarrows} ESI</math> (27) | ||
189行目: | 189行目: | ||
<br> <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1+\frac{[I]}{K_i}}{V_{max}}</math> (33) | <br> <math>\frac{1}{v} = \frac{K_m(1+\frac{[I]}{K_i})}{V_{max}}\frac{1}{[S]} + \frac{1+\frac{[I]}{K_i}}{V_{max}}</math> (33) | ||
従って<math>1 / [S]</math>に対して<math>1 / v</math>をプロットすると'''図5'''のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、<math>x</math>軸上の一点(<math>x</math>切片<math>= | 従って<math>1 / [S]</math>に対して<math>1 / v</math>をプロットすると'''図5'''のような直線プロットとなり、様々な濃度の阻害剤<math>I</math>の存在下で実験すると、<math>x</math>軸上の一点(<math>x</math>切片<math>={-1/K_m}</math>)で交わる直線群が得られる。これらの直線の傾きは (26)式で表せるので、競合阻害の場合と同様、各阻害剤濃度<math>[I]</math>に対して、'''図5'''のラインウィーバー・バークプロットの傾きをプロットした2次プロットは'''図4'''のようになり、その直線の<math>x</math>切片の値から<math>K_i</math>値を求めることが出来る。この場合も阻害定数<math>K_i</math>は値が小さいほど酵素に対する親和性が強いことを示す。 [[Image:Atsuhikoishida fig 5.jpg|thumb|300px|'''図5.非競合阻害剤存在下のラインウィーバー・バークプロット'''<br>各直線はx軸上の一点で交わる。]] | ||
以上のように、阻害剤濃度や基質濃度を様々に変えて酵素活性を測定し、'''図3'''や'''図5'''のようなラインウィーバー・バークプロットのパターンを調べることにより、その阻害剤と酵素の親和性や阻害剤の結合部位に関する情報を簡便に得ることが出来る。 | |||
== 酵素反応速度論的解析の実例 == | == 酵素反応速度論的解析の実例 == |