「積分発火モデル」の版間の差分

ナビゲーションに移動 検索に移動
77行目: 77行目:
 2つ目の拡張は、リーク電流に加え、指数関数のスパイク生成電流を考慮に入れたExponential Integrate and Fire (EIF) モデルである<ref name=Fourcaud-Trocme2003><pubmed>14684865</pubmed></ref>[10]。
 2つ目の拡張は、リーク電流に加え、指数関数のスパイク生成電流を考慮に入れたExponential Integrate and Fire (EIF) モデルである<ref name=Fourcaud-Trocme2003><pubmed>14684865</pubmed></ref>[10]。


::<math>F(V)=-G_L(V-E_L)+G_L\Delta{exp}(\frac{V-V_r}{\Delta_r}\mbox{    }\cdots(5))</math>
::<math>F(V)=-G_L(V-E_L)+G_L\Delta{exp}(\frac{V-V_r}{\Delta_r})\mbox{    }\cdots(5)</math>


ここで<math>\Delta_r</math>はスパイクの立ち上がりの度合いを表現するパラメータであり<math>\Delta_r</math>が小さいほどスパイクの立上がりは急峻になる。<math>\Delta_r\to 0</math>の極限でExponential Integrate and Fireは通常の積分発火モデルになる。Exponential Integrate and FireモデルもQuadratic Integrate and Fireモデルと同様、限られたタイプの発火パターンしか再現できない という問題があった。BretteとGerstner はExponential Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Brette2005><pubmed>16014787</pubmed></ref> [11]。このモデルも、多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Naud2008><pubmed>19011922</pubmed></ref>[12]。
ここで<math>\Delta_r</math>はスパイクの立ち上がりの度合いを表現するパラメータであり<math>\Delta_r</math>が小さいほどスパイクの立上がりは急峻になる。<math>\Delta_r\to 0</math>の極限でExponential Integrate and Fireは通常の積分発火モデルになる。Exponential Integrate and FireモデルもQuadratic Integrate and Fireモデルと同様、限られたタイプの発火パターンしか再現できない という問題があった。BretteとGerstner はExponential Integrate and Fireモデルを2変数<math>(V,U)</math>の微分方程式に拡張した<ref name=Brette2005><pubmed>16014787</pubmed></ref> [11]。このモデルも、多様な神経細胞が持つ、さまざまな発火パターンを再現できる<ref name=Naud2008><pubmed>19011922</pubmed></ref>[12]。

案内メニュー