「受容野」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
41行目: 41行目:
 LGNの受容野構造は網膜神経節細胞とほぼ同一であり、中心周辺拮抗型の同心円構造をもつ。これは個々のLGNニューロンが1つの網膜神経節細胞からの投射のみで、その反応特性が形成されているためと考えられている <ref name="ref10"><pubmed> 4093882 </pubmed></ref>。  
 LGNの受容野構造は網膜神経節細胞とほぼ同一であり、中心周辺拮抗型の同心円構造をもつ。これは個々のLGNニューロンが1つの網膜神経節細胞からの投射のみで、その反応特性が形成されているためと考えられている <ref name="ref10"><pubmed> 4093882 </pubmed></ref>。  


=== 第一次視覚野(V1野)でみられる受容野構造 ===
=== 第一次視覚野(V1野)単純型細胞の受容野構造 ===


 網膜神経節細胞あるいはLGNの細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、第一次視覚野の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この方位選択性(orientation selectivity)と呼ばれる特性をもつ細胞の古典的受容野構造は以下の2種類のものがある<ref name="ref11"><pubmed> 14403679 </pubmed></ref> <ref name="ref12"><pubmed> 4966457 </pubmed></ref>。1つは明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並んだ構造であり、このような構造をもつ細胞を単純型細胞(simple cell)と呼ぶ(図3A)。もう1つはON領域とOFF領域が重なりあった構造で、この構造をもつ細胞を複雑型細胞(complex cell)と呼ぶ(図3B)。  
 網膜神経節細胞あるいはLGNの細胞に細長いスリット光を呈示するとき、その向き(方位)を変えても反応は変化しない。このことは、これらの細胞の受容野構造が同心円状であることから予想できる。これにたいし、第一次視覚野の大部分の細胞はスリット光が特定の方位を向くときにのみ強く反応する。この方位選択性(orientation selectivity)と呼ばれる特性をもつ細胞の古典的受容野構造は以下の2種類のものがある<ref name="ref11"><pubmed> 14403679 </pubmed></ref> <ref name="ref12"><pubmed> 4966457 </pubmed></ref>。1つは明るい光で興奮反応がみられるON領域と暗い光で興奮応答がみられるOFF領域が隣あって同じ向きに並んだ構造であり、このような構造をもつ細胞を単純型細胞(simple cell)と呼ぶ(図3A)。もう1つはON領域とOFF領域が重なりあった構造で、この構造をもつ細胞を複雑型細胞(complex cell)と呼ぶ(図3B)。  
61行目: 61行目:
=== 複雑型細胞の受容野構造  ===
=== 複雑型細胞の受容野構造  ===


 複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答が位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相を変えても反応は変化しない。これらの選択性は、同じ方位や、空間周波数選択性をもち、受容野位相だけが異なる単純型細胞からの入力が収斂することでできあがっていると考えられている。これを最も単純化したモデルが図4に示すエネルギーモデル(energy model)である。このモデルでは、ガボールフィルターの出力が半波整流されたもの(これは単純型細胞の出力を模したものである)が4つ収斂することで、複雑型細胞の受容野構造が形成される。4つのフィルターの位相は90ずつずれている。さらに、第一段階の細胞が、同じ時間受容野をもつようにモデルを拡張することで、複雑型細胞の運動方向選択性が十分説明される。この拡張したエネルギーモデルは運動エネルギーモデル(motion energy model)と呼ばれている <ref name="ref18"><pubmed> 3973764 </pubmed></ref>。
 複雑型細胞も、単純型細胞と同様、サイン波の方位や空間周波数に選択性な応答を示す。しかし、単純型細胞の応答が位相に強く依存するのにたいし、複雑型細胞では、方位や空間周波数が最適であれば、位相を変えても反応は変化しない。これらの選択性は、同じ方位や、空間周波数選択性をもち、受容野位相だけが異なる単純型細胞からの入力が収斂することでできあがっていると考えられている。これを最も単純化したモデルが図4に示すエネルギーモデル(energy model)である。このモデルでは、ガボールフィルターの出力が半波整流されたもの(これは単純型細胞の出力を模したものである)が4つ収斂することで、複雑型細胞の受容野構造が形成される。4つのフィルターの位相は90ずつずれている。さらに、第一段階の細胞が、同じ時間受容野をもつようにモデルを拡張することで、複雑型細胞の運動方向選択性が十分説明される。この拡張したエネルギーモデルは運動エネルギーモデル(motion energy model)と呼ばれている <ref name="ref18"><pubmed> 3973764 </pubmed></ref>。  


 複雑型細胞の多くはまた、刺激の位置や明暗のコントラスに影響されることなく両眼視差を検出できることが知られている。この両眼視差検出器としての望ましい性質は、似た両眼視差に選択性をもつ単純型細胞からの出力が複雑型細胞で収斂することでできると考えられている。このような複雑型細胞のモデルは両眼視差エネルギーモデル(disparity energy model)と呼ばれている<ref name="ref19"><pubmed> 2396096 </pubmed></ref>。  
 複雑型細胞の多くはまた、刺激の位置や明暗のコントラスに影響されることなく両眼視差を検出できることが知られている。この両眼視差検出器としての望ましい性質は、似た両眼視差に選択性をもつ単純型細胞からの出力が複雑型細胞で収斂することでできると考えられている。このような複雑型細胞のモデルは両眼視差エネルギーモデル(disparity energy model)と呼ばれている<ref name="ref19"><pubmed> 2396096 </pubmed></ref>。  
197

回編集

案内メニュー