「電流源密度推定法」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
まず、細胞外記録により測定される電位(細胞外電位)がどのような過程から生じるのかを考察する。 細胞外空間の電気伝導度は等方的であると仮定する。 生理学的な条件化では、神経活動に由来する電磁場の変化は十分ゆっくり(目安として、主要な変化の時間スケールが1kHz未満)であるため、細胞外電位への容量性・誘導性の寄与は無視できる。 この場合細胞外電位の空間分布は、以下の式に表されるように、空間内に存在する電流源の強さと位置のみにより決定される。  
まず、細胞外記録により測定される電位(細胞外電位)がどのような過程から生じるのかを考察する。 細胞外空間の電気伝導度は等方的であると仮定する。 生理学的な条件化では、神経活動に由来する電磁場の変化は十分ゆっくり(目安として、主要な変化の時間スケールが1kHz未満)であるため、細胞外電位への容量性・誘導性の寄与は無視できる。 この場合細胞外電位の空間分布は、以下の式に表されるように、空間内に存在する電流源の強さと位置のみにより決定される。  


(1)  
<math>\Phi(\mathbf{r}) = \frac{1}{4 \pi \sigma} \int \frac{I(\mathbf{r'})}{\mathbf{r'}} d\mathbf{v'} \ \mbox{(1)}</math>


この式は電流源密度分布と電位分布の1対1対応関係を記述しており、電流源の密度分布が既知であれば、電位の空間分布はこの式より容易に計算できる。 しかしながら、それとは逆に、既知の電位分布から未知の電流源密度分布を求めたい場合、この式は容易な計算方法を与えない。 この場合、式(1)が以下のポワソン方程式の解となっていることを利用する。  
この式は電流源密度分布と電位分布の1対1対応関係を記述しており、電流源の密度分布が既知であれば、電位の空間分布はこの式より容易に計算できる。 しかしながら、それとは逆に、既知の電位分布から未知の電流源密度分布を求めたい場合、この式は容易な計算方法を与えない。 この場合、式(1)が以下のポワソン方程式の解となっていることを利用する。  
33

回編集

案内メニュー