「シナプス後肥厚」の版間の差分

編集の要約なし
16行目: 16行目:
 de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。  
 de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。  


 生化学的にPSDを単離する事が可能になった事により、それを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  
 これにより、PSDを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。  
[[ファイル:PSD_proteins2.png|thumb|right|'''PSD蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref>]]
[[ファイル:PSD_proteins2.png|thumb|right|'''PSD蛋白質'''<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref>]]


 Pengらは、[[質量分析計]]を用い、数百種に及ぶ分子を同定している<ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref>。その構成要素はシナプス伝達に関与する分子([[受容体]]など)のほか、細胞内[[情報伝達分子]]([[蛋白質リン酸化酵素]]、[[小分子GTP結合蛋白質]]など)、[[細胞骨格]]系分子([[アクチン]]、[[スペクトリン]]など)、[[足場蛋白質]]([[PSD-95]]、[[Shank]]、[[Homer]]など)、[[細胞接着分子]]([[カドヘリン]]、[[ニューロリギン]]など)が見いだされている。
 Kennedyらは、PSD分画に再現性よく多く認められる約45kDの蛋白質が、[[Ca2+/calmodulin依存性タンパク質キナーゼ|Ca<sup>2+</sup>/calmodulin依存性タンパク質キナーゼ]](CaMKII)&alpha;である事を見いだした<ref><pubmed> 6580651 </pubmed></ref>。この量は他の蛋白質と比べても多いが、CaMKIIはサンプル調整時の[[虚血]]によりPSDに移行することが知られており<ref><pubmed> 7931307 </pubmed></ref>、それによる影響で過大評価されている可能性があるが、それでもなお最も多い蛋白質の一つであることには間違えがない。CaMKIIは他の情報伝達分子に比べ、数十倍以上多く、これはCaMKIIが単に情報伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている<ref><pubmed> 17404223 </pubmed></ref>。
 
 また、Kennedyらは、PSD III分画に濃縮され、堅固にPSDを構成している蛋白質として、PSD-95を同定した<ref><pubmed> 1419001 </pubmed></ref>。PSD-95は後に、[[NMDA型グルタミン酸受容体]]のカルボキシル末端に結合し、NMDA型グルタミン酸受容体のシナプスへの局在を規定している蛋白質として再同定された。その後の研究により、PSD-95は様々なシナプス蛋白に結合する事が示され、[[足場蛋白]]の典型例として知られている。
 
 一方で、[[wikipedia:ja:ゲノム計画|ゲノム計画]]の完成、[[質量分析計]]技術の進歩により、PSDに存在する蛋白質を網羅的に解析する事も出来る様になった<ref name=peng_mol_cell_proteomics><pubmed>15020595</pubmed></ref><ref><pubmed> 15169875 </pubmed></ref><ref><pubmed> 15572359 </pubmed></ref>。その構成要素はシナプス伝達に関与する分子([[受容体]]など)のほか、細胞内[[情報伝達分子]]([[蛋白質リン酸化酵素]]、[[小分子GTP結合蛋白質]]など)、[[細胞骨格]]系分子([[アクチン]]、[[スペクトリン]]など)、足場蛋白質(PSD-95、[[Shank]]、[[Homer]]など)、[[細胞接着分子]]([[カドヘリン]]、[[ニューロリギン]]など)が見いだされている。


{| style="float:left" width="200" border="1" cellpadding="1" cellspacing="1"
{| style="float:left" width="200" border="1" cellpadding="1" cellspacing="1"
74行目: 78行目:


 Shengらは一個のPSDの[[wikipedia:ja:分子量|分子量]]とその要素の構成比から、一個のPSDの中にある分子の数を推定した<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref><pubmed>16507876</pubmed></ref>。それによると多い蛋白質で数百個の単位で存在することが判った。 この数値は、杉山らが独立に[[GFP]]融合蛋白質、[[免疫染色]]と[[蛍光]]標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している<ref name=sugiyama_nature_method><pubmed> 16118638 </pubmed></ref>。また、電気生理学的解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。  
 Shengらは一個のPSDの[[wikipedia:ja:分子量|分子量]]とその要素の構成比から、一個のPSDの中にある分子の数を推定した<ref name=sheng_ann_rev_biochem><pubmed> 17243894 </pubmed></ref><ref><pubmed>16507876</pubmed></ref>。それによると多い蛋白質で数百個の単位で存在することが判った。 この数値は、杉山らが独立に[[GFP]]融合蛋白質、[[免疫染色]]と[[蛍光]]標準ビーズを組み合わせた実験から得られた数字と驚くほど一致している<ref name=sugiyama_nature_method><pubmed> 16118638 </pubmed></ref>。また、電気生理学的解析によっても一つのシナプスに存在する受容体数は数十から数百個であり、妥当な数字である。  
 CaMKIIが桁違いに多いが、CaMKIIはサンプル調整時の[[虚血]]によりPSDに移行することが知られており<ref><pubmed> 7931307 </pubmed></ref>、それによる影響で過大評価されている可能性があるが、それでもなお最も多い蛋白質の一つであることには間違えがない。これはその他の情報伝達分子に比べ、数十倍以上多く、これはCaMKIIが単に情報伝達分子であるだけではなく、PSDに於ける構造因子であることも示唆する。実際に岡本らはCaMKIIβがアクチンを束化する活性があることを見いだしている<ref><pubmed> 17404223 </pubmed></ref>。


 これらのPSD分子は、蛋白質[[ドメイン]]間相互作用により、お互い結合し合っている。どの蛋白質が、PSDの最も中心に存在するかは判っていないが、一つの候補としてHomerとShankがある。この両者を精製し、混合することにより、PSDと同様な、網目状構造が再構築できるのに加え、そこにアダプター蛋白質であるGKAPを加えると組み込まれる<ref><pubmed> 19345194 </pubmed></ref>。GKAPはさらにPSD-95を介しシナプス膜表面の[[グルタミン酸受容体]]に結合するので、ShankとHomerを基盤としてその他の蛋白質が次々に結合していくことで、PSDが形成されている可能性がある。実際にPSDとShankをニューロンに過剰発現することによりPSDが大きくなることが知られている<ref><pubmed> 11498055 </pubmed></ref>。  
 これらのPSD分子は、蛋白質[[ドメイン]]間相互作用により、お互い結合し合っている。どの蛋白質が、PSDの最も中心に存在するかは判っていないが、一つの候補としてHomerとShankがある。この両者を精製し、混合することにより、PSDと同様な、網目状構造が再構築できるのに加え、そこにアダプター蛋白質であるGKAPを加えると組み込まれる<ref><pubmed> 19345194 </pubmed></ref>。GKAPはさらにPSD-95を介しシナプス膜表面の[[グルタミン酸受容体]]に結合するので、ShankとHomerを基盤としてその他の蛋白質が次々に結合していくことで、PSDが形成されている可能性がある。実際にPSDとShankをニューロンに過剰発現することによりPSDが大きくなることが知られている<ref><pubmed> 11498055 </pubmed></ref>。