16,040
回編集
細編集の要約なし |
細編集の要約なし |
||
1行目: | 1行目: | ||
[[ファイル:Spine EM.png|thumb|right|'''電子顕微鏡によるPSD画像'''<br>この例は穿孔PSDである。矢頭間:PSD、S:樹状突起棘、AT:軸索終止、a:星状膠細胞、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。SpacekとHarrisによる。許可を得て転載。]] | [[ファイル:Spine EM.png|thumb|right|'''電子顕微鏡によるPSD画像'''<br>この例は穿孔PSDである。矢頭間:PSD、S:樹状突起棘、AT:軸索終止、a:星状膠細胞、矢印:小胞体、スケールバー:200 nm。ヒト大脳皮質。SpacekとHarrisによる。許可を得て転載。]] | ||
英:postsynaptic density 英略称:PSD、独:postsynaptische Dichte 仏:densité post-synaptique | 英:postsynaptic density 英略称:PSD、独:postsynaptische Dichte 仏:densité post-synaptique<br> | ||
シナプス後肥厚(シナプス後肥厚部ともいう)とは[[シナプス]]膜直下、細胞質側に存在する多数の[[蛋白質]]の複合体である。当初、[[電子顕微鏡]]によるシナプスの観察から、シナプス直下のみ電子線を通しにくく、細胞膜が肥厚してみれるからこのように名付けられた。シナプス膜直下に有ることから、シナプスの構造や機能に密接な関わりがあることが推定され、多くの研究がなされてきた。[[wikipedea:ja:生化学|生化学]]的に単離する事も可能で、シナプスの構造蛋白質、調節蛋白質など数百種類に及ぶ分子を含む事が判っている。 | |||
[[Image:PSD_3D_reconstruction.jpg|thumb|right|'''樹状突起(D)、樹状突起棘とPSD(赤)の立体再構築'''<br>T - 細型棘、 M - 茸状棘と穿孔シナプス(ラット、海馬)SpacekとHarrisによる。許可を得て転載。]] | [[Image:PSD_3D_reconstruction.jpg|thumb|right|'''樹状突起(D)、樹状突起棘とPSD(赤)の立体再構築'''<br>T - 細型棘、 M - 茸状棘と穿孔シナプス(ラット、海馬)SpacekとHarrisによる。許可を得て転載。]] | ||
[[ファイル:PSD EM.png|thumb|right|'''電子顕微鏡による精製したPSD画像'''<br>スケールバー:100 nm。LismanとReeseによる<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。]] | [[ファイル:PSD EM.png|thumb|right|'''電子顕微鏡による精製したPSD画像'''<br>スケールバー:100 nm。LismanとReeseによる<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。]] | ||
14行目: | 14行目: | ||
== 生化学的性質 == | == 生化学的性質 == | ||
de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]] | de RobertisらはPSDが[[wikipedia:ja:界面活性剤|界面活性剤]]に耐性があることを利用し、PSDを生化学的に単離することに成功した。今日では、Siekevitzらによる界面活性剤に[[wikipedia:Sucrose_gradient_centrifugation|非連続蔗糖密度勾配遠心法]]を組み合わせた方法がよく用いられている<ref name=Carlin_J_Cell_Biol><pubmed>7410481</pubmed></ref>。単離したPSDの電子顕微鏡像は組織中のPSDと大きさや形状がよく似ており、直径が平均360 nm(面積で0.1 µm<sup>2</sup>)、分子量が1.10±0.36 GDaであった<ref><pubmed>16061821</pubmed></ref>。走査型電子顕微鏡観察では、不定形の網目状の構造が認められおり、その構造がPSDを形作る構成基盤である可能性がある<ref name=petersen_j_neurosci><pubmed>14657186</pubmed></ref>。 | ||
生化学的にPSDを単離する事が可能になった事により、それを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。 | 生化学的にPSDを単離する事が可能になった事により、それを構成する分子を同定することも可能となった。 順により強い界面活性剤処理を行うことにより、PSD I、II、IIIとしてPSDに強固に結合している分子を分別していくことも可能である。 ただし、標品には通常シナプス後部にはあまり存在しない分子(例えば[[塩基性ミエリン蛋白質]])も混入することも知られており、取れてきた標品の中に含まれている分子が本当にPSD由来であるかは、別に[[免疫染色]]などで確認する必要が有る。 |