セプチンを最も大量に発現する組織が神経系であることやヒトの精神・神経・筋疾患との関連から神経系におけるセプチン機能に関心が集まっている。[[ショウジョウバエ]]の致死性セプチン変異体''pnut''は初期胚の表割(細胞膜形成/cellularization)の異常を呈し、神経系の形質は不明であるが、眼の[[光受容細胞]]R7を欠損する''sina''変異体のエンハンサーであることが知られている。[[線虫]]の運動障害(''unc'')変異体として見出されたセプチン欠損変異体''unc-59/-61''では特定の細胞を除いて細胞分裂は顕在化せず、[[神経突起]]形成ないし[[ガイダンス]]の異常を呈する<ref><pubmed>12941631</pubmed></ref>。これまでに報告されたセプチン遺伝子欠損マウスのうち、''Sept7'',''9''の欠損は胎生致死となる一方、''Sept3'',''4'',''5'',''6''の欠損による神経系の異常は軽度なレベルにとどまる<ref>'''木下 専'''<br>セプチン細胞骨格の変幻自在な高次集合性と多彩な生理機能<br>''蛋白質・核酸・酵素'' 2009, 54(9);1150-8</ref>。後者の理由として同じグループに属する機能重複遺伝子による代償が推測されるが、興味深い事実も明らかになってきた。例えば''Sept4''欠損マウスでは聴覚性[[プレパルス抑制]]の減弱から、[[黒質]]-[[線条体]]投射系の[[ドーパミン]]ニューロンの軸索末端においてドパミン代謝機構がダウンレギュレーションしていることがわかった<ref><pubmed>17296554</pubmed></ref><ref>'''木下 専'''<br>ドーパミン神経伝達と変性におけるセプチン細胞骨格系の役割<br>''日本神経精神薬理学会誌'' 2012, 32;25-9</ref>。。一方、''Sept5''欠損マウスでは[[聴覚]]系[[シナプス]][[calyx of Held]]の軸索末端における[[シナプス小胞]]の開口放出の調節が異常となる<ref><pubmed>20624595</pubmed></ref>。いずれも足場ないし拡散障壁機能の欠損によるものと想定されるが、詳細なメカニズムの解明や他のニューロンやグリアにおけるセプチン機能の探索は今後の課題である。
セプチンを最も大量に発現する組織が神経系であることやヒトの精神・神経・筋疾患との関連から、神経系におけるセプチン機能に関心が集まっている。[[ショウジョウバエ]]の致死性セプチン変異体''pnut''は初期胚の表割(細胞膜形成/cellularization)の異常を呈し、神経系の形質は不明であるが、眼の光受容細胞R7を欠損する''sina''変異体の[[エンハンサー]]であることが知られている。線虫の運動障害(''unc'')変異体として見出されたセプチン欠損変異体''unc-59/-61''では細胞分裂は顕在化せず、神経突起形成ないしガイダンスの異常を呈する<ref><pubmed>12941631</pubmed></ref>。マウスでは脳におけるセプチンの発現・局在パターンは[[サブユニット]]や細胞ごとに大きく異なる。例えばSEPT3,5は神経細胞に発現して[[樹状突起スパイン]]や軸索末端に局在し、SEPT2,4は[[グリア細胞]]に発現して突起の特定の膜ドメインを裏打ちする(図3)<ref><pubmed>11064363</pubmed></ref>。これまでに報告されたセプチン遺伝子欠損マウスのうち、''Sept7'',''9''の欠損は胎生致死となる一方、''Sept3'',''4'',''5'',''6''の欠損による神経系の異常は軽度なレベルにとどまる<ref><pubmed>19588878</pubmed></ref>。後者の理由として同じグループに属する機能重複遺伝子による代償が推測されるが、興味深い事実も明らかになってきた。例えば''Sept4''欠損マウスでは聴覚性プレパルス抑制の減弱から、黒質-線条体投射系のドパミンニューロンの軸索末端においてドパミン代謝機構がダウンレギュレーションしていることがわかった<ref><pubmed>17296554</pubmed></ref>。一方、''Sept5''欠損マウスでは聴覚系シナプスcalyx of Heldの軸索末端におけるシナプス小胞の開口放出の調節が異常となる<ref><pubmed>20624595</pubmed></ref>。いずれも足場ないし拡散障壁機能の欠損によるものと想定されるが、詳細なメカニズムの解明や他のニューロンやグリアにおけるセプチン機能の探索は今後の課題である。
セプチンを最も大量に発現する組織が神経系であることやヒトの精神・神経・筋疾患との関連から、神経系におけるセプチン機能に関心が集まっている。ショウジョウバエの致死性セプチン変異体pnutは初期胚の表割(細胞膜形成/cellularization)の異常を呈し、神経系の形質は不明であるが、眼の光受容細胞R7を欠損するsina変異体のエンハンサーであることが知られている。線虫の運動障害(unc)変異体として見出されたセプチン欠損変異体unc-59/-61では細胞分裂は顕在化せず、神経突起形成ないしガイダンスの異常を呈する[7]。マウスでは脳におけるセプチンの発現・局在パターンはサブユニットや細胞ごとに大きく異なる。例えばSEPT3,5は神経細胞に発現して樹状突起スパインや軸索末端に局在し、SEPT2,4はグリア細胞に発現して突起の特定の膜ドメインを裏打ちする(図3)[8]。これまでに報告されたセプチン遺伝子欠損マウスのうち、Sept7,9の欠損は胎生致死となる一方、Sept3,4,5,6の欠損による神経系の異常は軽度なレベルにとどまる[9]。後者の理由として同じグループに属する機能重複遺伝子による代償が推測されるが、興味深い事実も明らかになってきた。例えばSept4欠損マウスでは聴覚性プレパルス抑制の減弱から、黒質-線条体投射系のドパミンニューロンの軸索末端においてドパミン代謝機構がダウンレギュレーションしていることがわかった[10]。一方、Sept5欠損マウスでは聴覚系シナプスcalyx of Heldの軸索末端におけるシナプス小胞の開口放出の調節が異常となる[11]。いずれも足場ないし拡散障壁機能の欠損によるものと想定されるが、詳細なメカニズムの解明や他のニューロンやグリアにおけるセプチン機能の探索は今後の課題である。
参考文献
↑Weirich, C.S., Erzberger, J.P., & Barral, Y. (2008).
The septin family of GTPases: architecture and dynamics. Nature reviews. Molecular cell biology, 9(6), 478-89.
[PubMed:18478031]
[WorldCat]
[DOI]
↑Weirich, C.S., Erzberger, J.P., & Barral, Y. (2008).
The septin family of GTPases: architecture and dynamics. Nature reviews. Molecular cell biology, 9(6), 478-89.
[PubMed:18478031]
[WorldCat]
[DOI]
↑Longtine, M.S., DeMarini, D.J., Valencik, M.L., Al-Awar, O.S., Fares, H., De Virgilio, C., & Pringle, J.R. (1996).
The septins: roles in cytokinesis and other processes. Current opinion in cell biology, 8(1), 106-19.
[PubMed:8791410]
[WorldCat]
[DOI]
↑Longtine, M.S., DeMarini, D.J., Valencik, M.L., Al-Awar, O.S., Fares, H., De Virgilio, C., & Pringle, J.R. (1996).
The septins: roles in cytokinesis and other processes. Current opinion in cell biology, 8(1), 106-19.
[PubMed:8791410]
[WorldCat]
[DOI]
↑Longtine, M.S., DeMarini, D.J., Valencik, M.L., Al-Awar, O.S., Fares, H., De Virgilio, C., & Pringle, J.R. (1996).
The septins: roles in cytokinesis and other processes. Current opinion in cell biology, 8(1), 106-19.
[PubMed:8791410]
[WorldCat]
[DOI]
↑Longtine, M.S., DeMarini, D.J., Valencik, M.L., Al-Awar, O.S., Fares, H., De Virgilio, C., & Pringle, J.R. (1996).
The septins: roles in cytokinesis and other processes. Current opinion in cell biology, 8(1), 106-19.
[PubMed:8791410]
[WorldCat]
[DOI]
↑Finger, F.P., Kopish, K.R., & White, J.G. (2003).
A role for septins in cellular and axonal migration in C. elegans. Developmental biology, 261(1), 220-34.
[PubMed:12941631]
[WorldCat]
[DOI]
↑Kinoshita, A., Noda, M., & Kinoshita, M. (2000).
Differential localization of septins in the mouse brain. The Journal of comparative neurology, 428(2), 223-39.
[PubMed:11064363]
[WorldCat]
[DOI]
↑Kinoshita, M. (2009).
[Diverse physiological functions of the septin system: the protean cytoskeleton]. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 54(9), 1150-8.
[PubMed:19588878]
[WorldCat]
↑Ihara, M., Yamasaki, N., Hagiwara, A., Tanigaki, A., Kitano, A., Hikawa, R., ..., & Kinoshita, M. (2007).
Sept4, a component of presynaptic scaffold and Lewy bodies, is required for the suppression of alpha-synuclein neurotoxicity. Neuron, 53(4), 519-33.
[PubMed:17296554]
[WorldCat]
[DOI]
↑Yang, Y.M., Fedchyshyn, M.J., Grande, G., Aitoubah, J., Tsang, C.W., Xie, H., ..., & Wang, L.Y. (2010).
Septins regulate developmental switching from microdomain to nanodomain coupling of Ca(2+) influx to neurotransmitter release at a central synapse. Neuron, 67(1), 100-15.
[PubMed:20624595]
[PMC]
[WorldCat]
[DOI]