「ニューレキシン」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
(3人の利用者による、間の34版が非表示)
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">[http://profiles.umassmed.edu/profiles/ProfileDetails.aspx?Person=3324 渡辺 拓也]、[http://researchmap.jp/kennyfutai 二井 健介]</font><br>
<font size="+1">[http://researchmap.jp/kennyfutai 二井 健介]</font><br>
''マサチューセッツ州立大学 メディカルスクール''<br>
''マサチューセッツ州立大学 メディカルスクール''<br>
DOI:<selfdoi /> 原稿受付日:2013年6月4日 原稿完成日:2013年7月29日<br>
DOI [[XXXX]]/XXXX 原稿受付日:2013年6月4日 原稿完成日:2013年6月xx日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所)
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所)
</div>
</div>


英語名:neurexin 英略称:Nrxn
英語名:neurexin


{{box|text= ニューレキシンは[[シナプス前末端]]に存在する1回膜貫通型タンパク質であり、[[シナプス後部]]の[[wj:膜タンパク質|膜タンパク質]]である[[ニューロリギン]](Neuroligin: ニューロリギン)と[[シナプス間隙]]で結合し、シナプス構築や[[神経伝達物質]]の放出機構などに関わっている<ref name=ref1><pubmed>18923512</pubmed></ref><ref name=ref9><pubmed>17275284</pubmed></ref>。多くの[[wj:スプライス変異体|スプライス変異体]]が存在し、[[グルタミン酸]]作動性・[[GABA]]作動性神経シナプスの構築の選別に影響すると考えられている<ref name=ref2><pubmed>16624946</pubmed></ref> <ref name=ref3><pubmed>18006501</pubmed></ref>。また、[[自閉症]]や[[統合失調症]]の発症に関与していると考えられている<ref name=ref4><pubmed>17034946</pubmed></ref> <ref name=ref5><pubmed>21424692</pubmed></ref> <ref name=ref6><pubmed>22405623</pubmed></ref> <ref name=ref7><pubmed>19880096</pubmed></ref> <ref name=ref8><pubmed>21477380</pubmed></ref> 。}}
{{box|text= ニューレキシンは[[シナプス前部]]に存在する[[wikipedia:jp:I型膜タンパク質|I型膜タンパク質]]であり、シナプス後部の膜タンパク質であるニューロリギンとシナプス間隙で結合し、シナプス構築や神経伝達物質の遊離機構などに関わっている。}}


== 歴史 ==
== 歴史 ==
 ニューレキシンが最初に[[wikipedia:jp:クロゴケグモ|クロゴケグモ]]の毒成分である[[α-ラトロトキシン]]の[[受容体]]として発見され、その後、他のニューレキシンが同定された<ref><pubmed>9448462</pubmed></ref>。
[[image:図1NRXNのドメイン構造.jpg|thumb|330px|'''図1.ニューレキシンのドメイン構造'''<br>矢印:選択的スプライシング部位 SP:シグナルペプチド、LNS: laminin, neurexin, sex-hormone binding protein domain、EGF: 上皮成長因子様ドメイン、CHO: 糖鎖結合部位、TM:膜貫通領域、PDZ-BD: PDZドメイン結合部位]]
[[image:図2興奮性シナプスにおけるNRXNとNLGNの結合模式図.jpg|thumb|330px|'''図2.興奮性シナプスにおけるニューレキシンとニューロリギンの結合模式図'''<br>ニューレキシンとニューロリギンはシナプス前末端とシナプス後部間で結合している。ニューレキシンとニューロリギンはそれぞれシナプス前末端とシナプス後部のシナプス局在分子と直接・間接的に結合している。]]


{|width=430px border="1" cellpadding="1" cellspacing="1" class="wikitable"
 ニューレキシンが最初に[[wikipedia:jp:クロゴケグモ|クロゴケグモ]]の毒成分である[[α-latrotoxin]][[受容体]]として発見され、その後、他のニューレキシンが同定された<ref><pubmed>9448462</pubmed></ref>。
|-
| <div class="thumb right" style="width:300px;"><youtube>DuARiSOGy88</youtube></div>
|-
| '''動画. βニューレキシンとニューロリギン複合体の3次元構造'''<br>2分子のニューレキシンと2分子のニューロリギンがカルシウム依存的に相互作用する。
|}
 
{{PBB|geneid=9378}}{{PBB|geneid=9379}}{{PBB|geneid=9369}}
 
==サブファミリー==
 哺乳類ではニューレキシンは3つの遺伝子(ニューレキシン1、2、3)から成り、プロモーターの違いから、長鎖のαニューレキシン(上流プロモーター)、短鎖のβニューレキシン(下流プロモーター)の2つのアイソフォームに転写される。従って、3つのαニューレキシン(1α、2α、3α)と3つのβニューレキシン(1β、2β、3β)からなる。
 
 さらに、αニューレキシンは選択的スプライシング部位を5つ[alternative splice site (SS)1から5]、βニューレキシンは2つ(SS4と5)有しており、3000以上のスプライス変異体が存在する<ref name=ref10><pubmed>16794786</pubmed></ref> <ref name=ref1 /> <ref><pubmed>20510934</pubmed></ref> <ref name=ref11><pubmed>12036300</pubmed></ref>。特にSS4の選択的スプライシングは神経活動によって、調節されている<ref><pubmed>22196734</pubmed></ref>。
 
 [[ショウジョウバエ]][[線虫]][[wj:ミツバチ|ミツバチ]]、[[wj:アメフラシ|アメフラシ]]などの無脊椎動物においてもαニューレキシン遺伝子が同定されている<ref name=ref11 /> <ref><pubmed>18974885</pubmed></ref> <ref><pubmed>21555073</pubmed></ref>。また、線虫ではβニューレキシンも同定されている<ref><pubmed>21055481</pubmed></ref>。


== 構造 ==
== 構造 ==
 αニューレキシンは細胞外側に6つの[[LNSドメイン]][laminin, neurexin, sex-hormone binding protein (LNS)ドメインまたはLaminin G ドメイン]とLNSドメインを隔てる3つの[[上皮成長因子様ドメイン]]([[epidermal growth factor]]-like domain)を有している。一方、βニューレキシンのLNSドメインは一つである。両ニューレキシンの細胞内C末端領域には[[PDZドメイン]][postsynaptic [[density]] ([[PSD]]) -95/ discs large/ zona-occludens-1ドメイン]結合部位を有する<ref name=ref9 /> <ref name=ref10 />(図1)。


 βニューレキシン の細胞外構造およびβニューレキシンとニューロリギン複合体の3次元構造が明らかとなっている(動画)<ref><pubmed>18093522</pubmed></ref>。
 ニューレキシンは[[wikipedia:jp:哺乳類|哺乳類]]では3種類の遺伝子から成り、それぞれ[[ニューレキシン 1]]、[[ニューレキシン 2|2]]、[[ニューレキシン 3|3]]として発現している。さらに、それらの遺伝子から長鎖と短鎖の2つのアイソフォームが発現し、長鎖が[[α-ニューレキシン]]、短鎖が[[β-ニューレキシン]]である。従って、3つのα-ニューレキシン([[1α]]、[[2α]]、[[3α]])と3つのβ-ニューレキシン([[1β]]、[[2β]]、[[3β]])がある。α-ニューレキシンは上流に、β-ニューレキシンは下流にプロモーターが存在している。


== 発現 ==
 α-ニューレキシンは6つの[[LNSドメイン]]([[laminin]], [[Neurexin]], [[sex-hormone binding protein]] ドメイン)とLNSドメインを隔てる3つの[[EGF様ドメイン]][[epidermal growth factor]]-like ドメイン)を有している。一方、β-ニューレキシンのLNSドメインは一つだけである。両ニューレキシンのC末領域は[[PDZドメイン]]を有している<ref name=ref2><pubmed>17275284</pubmed></ref> <ref name=ref4><pubmed>16794786</pubmed></ref>。
 ニューレキシンは脳に高レベルで発現しており、[[海馬]]においては細胞種の違いによって異なるアイソフォームの発現が認められている(例えば、海馬[[CA1]][[錐体細胞]][[歯状回]]顆粒細胞ではニューレキシン3αの発現が認められないのに対して、介在細胞ではニューレキシン3αが高発現している)<ref name=ref12><pubmed>7695896</pubmed></ref>。また、脳以外の臓器にも発現しており、ニューレキシン1(α, β)と3(α, β)の[[mRNA]]は心臓、肺、腎臓、胎盤にも発現している<ref name=ref20><pubmed>21048075</pubmed></ref> <ref><pubmed>12379233</pubmed></ref>。また、血管においてもニューレキシンの発現が認められている<ref name=ref21><pubmed>19926856</pubmed></ref>。
{| class="wikitable"
|+ 表1.Allen Brain Atlasでの発現パタン
|-
|[http://mouse.brain-map.org/experiment/show/79760462 ニューレキシン1]||ニューレキシン2||[http://mouse.brain-map.org/gene/show/74000492 ニューレキシン3]
|}


== 結合タンパク質 ==
== 分布 ==
===細胞外ドメイン===
 これまでに5つのタンパク質 [ニューロリギン、[[dystroglycan]]、[[neurexophilins]]、[[Leucine-rich repeat transmembrane neuronal protein]]s ([[LRRTMs]])、[[Cbln]]]が同定されている<ref name=ref13><pubmed>11470830</pubmed></ref> <ref name=ref14><pubmed>8699246</pubmed></ref> <ref name=ref15><pubmed>20064387</pubmed></ref> <ref><pubmed>20064388</pubmed></ref> <ref><pubmed>20537373</pubmed></ref> <ref name=ref16><pubmed>21410790</pubmed></ref> <ref name=ref17 /> <ref name=ref18 /> <ref name=ref19 /> <ref name=ref2 />。


 ニューロリギンとの結合において、ニューレキシンのスプライス変異体は、細胞間の認識や接着ならびにシナプス構築などの過程に重要な役割を有していることが示されており、現在までにSS4の挿入の有無が結合選択性に影響することが報告されている(''[[ニューロリギン]]を参照'')。
 ニューレキシンはほとんどが[[]]に発現しているが、[[wikipedia:jp:膵臓|膵臓]]、[[wikipedia:jp:肺|肺]]、[[wikipedia:jp:腎臓|腎臓]]や[[wikipedia:jp:血管|血管]]にも発現している<ref><pubmed>18064415</pubmed></ref> <ref><pubmed>21858769</pubmed></ref> <ref name=ref3><pubmed>21048075</pubmed></ref>。


 βニューレキシン1(4-)(SS4非挿入体)は、splicing site B(SSB)の挿入の有無に関わらずニューロリギン1[NL1(-), NL1A, NL1B, NL1AB]ならびにニューロリギン2[NL2(-)とNL2A]と高親和性に結合するが、βニューレキシン1(4+)(SS4挿入体)のSSB挿入体ニューロリギン1(NL1B, NL1AB)との結合親和性は低い(表1)<ref name=ref17><pubmed>16242404</pubmed></ref> <ref name=ref18><pubmed>18812509</pubmed></ref> <ref name=ref19><pubmed>16846852</pubmed></ref> <ref name=ref2 />。一方、αニューレキシンはSS4の有無に関わらずニューロリギン1-SSB挿入体とは結合しないが<ref name=ref17 />、αニューレキシンのLNS6ドメインのみではニューロリギン1-SSB挿入体と結合する<ref name=ref18 />。LRRTMsは、α-,βニューレキシン(4-)とのみ結合する<ref name=ref100><pubmed>20519524</pubmed></ref>。[[Cbln1]]と[[Cbln2]]はα-,βニューレキシン(4+)と結合するが、ニューレキシン(4-)とは結合しない<ref name=ref16 />。
== 機能 ==


 Dystroglycanはα-、βニューレキシンとスプライス変異体依存的に結合する<ref name=ref13 />。また、neurexophilinはαニューレキシンとスプライス変異体非依存的に結合する<ref name=ref14 /> <ref><pubmed>9856994</pubmed></ref>。
===脳===
 ニューレキシンは哺乳類脳では、4つの細胞外結合パートナー(ニューロリギン、[[dystroglycan]]、[[neurexophilins]]、[[Leucine-rich repeat transmembrane neuronal proteins]](LRRTMs))が存在している。ニューロリギンはα-ニューレキシン、β-ニューレキシンの両者と[[Ca2+|Ca<sup>2+</sup>]]依存性に結合する<ref name=ref2 />。ニューロリギンとの結合には、α-ニューレキシンでは6番目のLNSドメインが、β-ニューレキシンでは唯一のLNSドメインが関与している<ref name=ref5><pubmed>18923512</pubmed></ref>。Dystroglycanは優先的にα-ニューレキシンとCa<sup>2+</sup>依存性に結合する。また、neurexophilinは特異的にα-ニューレキシンとCa<sup>2+</sup>非依存性に結合する<ref name=ref2 />。Leucine-rich repeat transmembrane neuronal proteinsは[[興奮性シナプス]]に局在しており、ニューレキシンと結合し、興奮性シナプスの形成に関与している<ref><pubmed>20064387</pubmed></ref>。


{| class="wikitable"
 β-ニューレキシンを過剰発現させた非神経細胞は、共培養した神経細胞において[[GABA]]作動性(抑制性)と[[グルタミン酸]]作動性(興奮性)神経ポストシナプスへの[[分化]]を誘導することから、β-ニューレキシンはシナプス形成の際の細胞と細胞の連結の調節因子として働いているようである<ref name=ref10><pubmed>21394644</pubmed></ref>
|+ 表2.ニューレキシンのスプライス変異体と細胞外ドメインを介した結合タンパク質との結合様式<ref name=ref17 /><ref><pubmed>20624592</pubmed></ref><ref><pubmed>20543817</pubmed></ref><ref name=ref100 /><ref name=ref16 /><br>灰色内:結合能の相対的比較
|-
|
| αニューレキシン(+SS4)
| αニューレキシン(-SS4)
| βニューレキシン(+SS4)
| βニューレキシン(-SS4)
|-
| ニューロリギン1(-)
| style="text-align:center" | +
| style="text-align:center" | +
| style="background-color:#d3d3d3; text-align:center" | +++
| style="background-color:#d3d3d3; text-align:center" | ++++
|-
| ニューロリギン1A
| style="text-align:center" | +
| style="text-align:center" | +
| style="background-color:#d3d3d3; text-align:center" | +++
| style="background-color:#d3d3d3; text-align:center" | ++++
|-
| ニューロリギン1B
| style="text-align:center" | -
| style="text-align:center" | -
| style="background-color:#d3d3d3; text-align:center" | ++
| style="background-color:#d3d3d3; text-align:center" | ++++
|-
| ニューロリギン1AB
| style="text-align:center" | -
| style="text-align:center" | -
| style="background-color:#d3d3d3; text-align:center" | ++
| style="background-color:#d3d3d3; text-align:center" | ++++
|-
| ニューロリギン2
| style="text-align:center" | +
| style="text-align:center" | +
| style="background-color:#d3d3d3; text-align:center" | ++
| style="background-color:#d3d3d3; text-align:center" | ++++
|-
| ニューロリギン3
| style="text-align:center" | +
| style="text-align:center" | +
| style="background-color:#d3d3d3; text-align:center" | +
| style="background-color:#d3d3d3; text-align:center" | ++
|-
| ニューロリギン4
|
|
| style="background-color:#d3d3d3; text-align:center" |
| style="background-color:#d3d3d3; text-align:center" | +
|-
| Cbln
| style="text-align:center" | +
| style="text-align:center" | -
| style="text-align:center" | +
| style="text-align:center" | -
|-
| LRRTMs
| style="text-align:center" | -
| style="text-align:center" | +
| style="text-align:center" | -
| style="text-align:center" | +
|-
|}


===細胞内ドメイン===
 β-ニューレキシン[[ノックアウトマウス]]は未だに確立されていない。一方、α-ニューレキシンノックアウトマウスは生存可能であるが、周産期に呼吸器病によって死亡する。α-ニューレキシンノックアウトマウスは[[GABA]]作動性[[神経終末]]の数を減少させるが、グルタミン酸作動性神経終末には変化を示さない。さらに、α-ニューレキシンノックアウトマウスは[[Ca2+チャネル|Ca<sup>2+</sup>チャネル]]の機能低下が原因となり、神経伝達物質遊離の障害を示すことが報告されている。すなわち、α-ニューレキシンは[[抑制性シナプス]]構築に関与し、Ca<sup>2+</sup>チャネル機能を調節する役割を有している<ref name=ref10 />。


 細胞内C末端領域のPDZドメイン結合部位を介し、[[シナプトタグミン]](synaptotagmin)<ref><pubmed>8439414</pubmed></ref>や[[CASK]]<ref><pubmed>8786425</pubmed></ref>などの[[シナプス前]]末端局在タンパク質と結合している。
 ニューレキシンは[[CASK]]と[[Mint]]、[[Veli]]から成る複合体を介して、[[シナプス小胞]]と結合している<ref name=ref10 />


== 機能 ==
===血管===
===神経===
 β-ニューレキシンに対する[[wikipedia:jp:抗体|抗体]]の血管への付加は、[[ノルアドレナリン]]誘導血管収縮を減弱させており、[[wikipedia:jp:血管平滑筋|血管平滑筋]]のβ-ニューレキシンはCa<sup>2+</sup>チャネル調節因子として血管緊張調整に関与しているようである。また、この抗β-ニューレキシン抗体はFGF-2誘導血管新生を減弱させている。
 ニューレキシンは主にシナプス前末端に局在し、シナプス後部に局在する結合タンパク質との相互作用により[[グルタミン酸]]作動性(興奮性)および[[GABA作動性]](抑制性)シナプスの形成・成熟・機能を制御していると考えられている。
血管においてβ-ニューレキシンは、血管緊張や血管再構築に関与しているようである<ref name=ref10 />。


 ニューレキシンを強制発現させた株化細胞と[[初代培養神経]]細胞を共培養することにより、ニューレキシンがシナプス後部の[[分化]]に果たす役割が明らかになっている。非神経細胞へのβニューレキシン強制発現は、共培養した神経細胞上の抑制性、[[興奮性シナプス]]後部の分化を誘導する。一方、αニューレキシンの強制発現は[[抑制性シナプス]]後部の分化を誘導する<ref><pubmed>15620359</pubmed></ref> <ref name=ref3 /> <ref><pubmed>15837930</pubmed></ref> <ref name=ref19 />。βニューレキシン(4+)は、興奮性シナプス後部タンパク質であるニューロリギン1/3/4と[[PSD-95]]のクラスター形成能を低下させるが、抑制性シナプス後部タンパク質であるニューロリギン2と[[gephyrin]]のクラスター形成能には影響しない<ref name=ref2 />。このことから、βニューレキシン のSS4挿入の有無は、興奮性・抑制性神経シナプスの構築の選別に影響すると考えられている。
===腎臓===
 ニューレキシンは、[[wikipedia:jp:糸球体足細胞|糸球体足細胞]]によって得られる[[wikipedia:jp:スリット|スリット]]膜に発現しており、スリット膜の構成タンパク質である[[wikipedia:CD2AP|CD2AP]]と結合している。スリット膜は、[[wikipedia:jp:糸球体|糸球体]]におけるタンパク質通過防止機能を有しており、ニューレキシンはタンパク尿のバリアー機能に関与すると考えられている<ref name=ref3 />


 ニューレキシンとニューロリギンをシナプス前・後細胞にそれぞれ強制発現させた機能解析により、αニューレキシン1とニューロリギン2は機能的抑制性シナプス形成に重要であるが、βニューレキシン1とニューロリギン2の組み合わせは重要ではないことが示唆されている<ref><pubmed>23426688</pubmed></ref>。
== スプライシング変異体 ==


 以上より、特異的なニューレキシンとニューロリギンの結合の組み合わせが興奮性、抑制性シナプスの仕分けに重要であると考えられている。また、ニューロリギンノックアウトとノックインマウスの解析により、抑制性シナプス前細胞の種類に依存して抑制性シナプスの機能異常が見られることが明らかになっている<ref><pubmed>19889999</pubmed></ref> <ref><pubmed>23583622</pubmed></ref>。これは抑制性細胞の種類によって、発現又は機能しているニューレキシンアイソフォームが異なることを示唆している。
 α-ニューレキシンは[[選択的スプライシング]]部位を5つ、β-ニューレキシンは2つ有しており、1000以上のスプライス変異体が存在する<ref name=ref4 />


 LRRTMはα-, βニューレキシン(4-)と結合し、興奮性シナプス形成を制御している<ref name=ref15 />。
 これらの様々なスプライシング変異体は、細胞―細胞間の認識や[[接着]]ならびにシナプス構築などの過程に重要な役割を有していることが議論されており、現在までにsplice site 4 insert (S4)が結合選択性やシナプス機能を調節していることが報告されている。例えば、S4を有していないβ-ニューレキシン(-S4 β-ニューレキシン)は、splicing site B(SB)の有無に関わらずニューロリギン1(+SB and –SBニューロリギン1)とニューロリギン2(SBを有さない)と高親和性に結合するが、β-ニューレキシンへのS4の付加は、+SBニューロリギン1との結合親和性を低下させる。


 αニューレキシンは[[Ca2+チャネル|Ca<sup>2+</sup>チャネル]]と共にシナプス伝達物質放出機構を調節することが示唆されている<ref name=ref22><pubmed>12827191</pubmed></ref>。
 また、[[グルタミン酸]]作動性・GABA作動性神経シナプスの構築に関して、β-ニューレキシンへのsplice site 4 insertの付加(+S4 β-ニューレキシン)は、グルタミン酸作動性神経シナプス後部タンパク質であるニューロリギン1/3/4と[[PSD95]]のクラスタリング能を減少させるが、GABA作動性神経後シナプスタンパク質であるニューロリギン2とgephyrinのクラスタリング能には影響しない。また、ニューロリギン2(ほとんどがsplice site B insertを含んでいない:-Bニューロリギン)は+Bニューロリギンよりも[[VGAT]]のクラスタリングを促進する。このように、+S4 β-ニューレキシンと-Bニューロリギンは共にGABA作動性神経シナプスの分化を促進し、一方で、-S4 β-ニューレキシンと+Bニューロリギン1は共にグルタミン酸作動性神経シナプスの分化を促進している。
==== 遺伝子改変マウス ====
=====αニューレキシン1 knockoutマウス=====
:統合失調症患者で認められる[[プレパルスインヒビション]]の低下を示す。海馬において興奮性シナプス伝達障害が認められるが、抑制性シナプス伝達障害はない<ref><pubmed>19822762</pubmed></ref>。αニューレキシン1 ヘテロKOマウスは、新規環境に対する反応性の増加を示し、特に雄性マウスにおいてその行動が認められる<ref><pubmed>22348092</pubmed></ref>。


=====αニューレキシン triple Knockoutマウス=====
 鶏[[交感神経]]では、+S4ニューレキシンと-S4ニューレキシンの転写産物の比率は、成長や培養実験における[[wikipedia:jp:成長因子|成長因子]]の付加に応じて変化する<ref name=ref2 />。
:呼吸器系に障害が認められる。KOマウスは[[GABA]]作動性[[神経終末]]の数を減少させるが、グルタミン酸作動性神経終末には変化を示さない。さらに、KOマウスは[[Ca2+チャネル]]の機能低下が原因となり、神経伝達物質放出の障害を示すことが報告されている<ref name=ref22 />。


===血管===
== ニューレキシン類似タンパク質(CASPRs) ==
 βニューレキシンに対する[[wj:抗体|抗体]]の血管への付加は、血管新生を抑制する。また、[[ノルアドレナリン]]誘導血管収縮も減弱させており、[[wj:血管平滑筋|血管平滑筋]]のβニューレキシンはCa<sup>2+</sup>チャネル調節因子として血管緊張調整に関与している<ref name=ref21 /> <ref><pubmed>21394644</pubmed></ref>。αニューレキシンの細胞外ドメインの類似断片は、[[受容体型チロシンキナーゼ]][[Tie2]]を介して血管新生を促進する<ref><pubmed>23485462</pubmed></ref>。


===腎臓===
 [[CASPR]]s([[contactin-associated proteins]])はα-ニューレキシンと類似の構造を有するが、α-ニューレキシンが含んでいない細胞外ドメインを有している。ニューレキシンの様に[[細胞接着分子]]として機能しているが、主に、神経細胞とグリア細胞の接着に関与している<ref name=ref10 />。
 ニューレキシンは、[[wj:糸球体|糸球体]][[wj:足細胞|足細胞]]によって得られる[[wj:スリット膜|スリット膜]]に発現しており、スリット膜の構成タンパク質である[[CD2AP]]と結合している。スリット膜は、糸球体におけるタンパク質通過防止機能を有しており、ニューレキシンはタンパク質尿のバリアー機能に関与すると考えられている<ref name=ref20 />。


== 疾患との関連 ==
== 疾患との関連 ==
===自閉症===
 患者の中にはニューレキシン1と2に変異[ミスセンス変異<ref name=ref4 />, truncating mutation<ref name=ref5 />, [[一塩基多型]]<ref name=ref6 />]を有するものがいる。


===統合失調症===
 ニューレキシン1遺伝子で7つの点変異と2つのdistinct translocation event、4つのdifferent large-scale deletionが[[自閉症]]患者において発見されている<ref name=ref5 />
 ニューレキシン1での変異 [truncating mutation<ref name=ref5 />[[コピー数変異]]<ref name=ref7 /> <ref name=ref8 />] が統合失調症患者で発見されている。
 
 ニューレキシン1遺伝子のニューレキシン1βではなく、ニューレキシン1αをコードしている配列における欠失が[[統合失調症]]患者において発見されている<ref name=ref5 />。また、nニューレキシン1の[[遺伝子多型]]と[[ニコチン依存症]]が関係していることが報告されている<ref><pubmed>20414139</pubmed></ref>


== ニューレキシン類似タンパク質 ==
 また、ニューレキシン2の短縮型変異が自閉症患者において発見されている<ref><pubmed>21424692</pubmed></ref>。
 [[CASPR]]s(contactin-associated proteins: ニューレキシン4としても知られている)はαニューレキシンと類似の構造を有するが、αニューレキシンには無い細胞外ドメインを有している。ニューレキシンの様に[[細胞接着分子]]として機能している<ref><pubmed>9786343</pubmed></ref>。また、CASPR1は[[AMPA型グルタミン酸受容体]]の輸送を調節することが報告されている<ref><pubmed>22223644</pubmed></ref>。また、CASPR2の遺伝子変異は自閉症と関連していると考えられている<ref><pubmed>22365836</pubmed></ref>。


==関連項目==
 ニューレキシン3は[[依存]]のしやすさと関係していると考えられており、[[薬物依存]]や[[肥満]]のリスクとニューレキシン3の遺伝子多型が関わっている。さらに、ニューレキシン3の遺伝子多型は[[衝動性]]と関係しており、男性にのみこの関係性があることが報告されている<ref><pubmed>21676558</pubmed></ref>。
*[[ニューロリギン]]
*[[細胞接着因子]]


== 参考文献 ==
== 参考文献 ==
<references />
<references />

2013年6月17日 (月) 13:52時点における版

二井 健介
マサチューセッツ州立大学 メディカルスクール
DOI XXXX/XXXX 原稿受付日:2013年6月4日 原稿完成日:2013年6月xx日
担当編集委員:林 康紀(独立行政法人理化学研究所)

英語名:neurexin

 ニューレキシンはシナプス前部に存在するI型膜タンパク質であり、シナプス後部の膜タンパク質であるニューロリギンとシナプス間隙で結合し、シナプス構築や神経伝達物質の遊離機構などに関わっている。

歴史

 ニューレキシンが最初にクロゴケグモの毒成分であるα-latrotoxin受容体として発見され、その後、他のニューレキシンが同定された[1]

構造

 ニューレキシンは哺乳類では3種類の遺伝子から成り、それぞれニューレキシン 123として発現している。さらに、それらの遺伝子から長鎖と短鎖の2つのアイソフォームが発現し、長鎖がα-ニューレキシン、短鎖がβ-ニューレキシンである。従って、3つのα-ニューレキシン()と3つのβ-ニューレキシン()がある。α-ニューレキシンは上流に、β-ニューレキシンは下流にプロモーターが存在している。

 α-ニューレキシンは6つのLNSドメインlaminin, Neurexin, sex-hormone binding protein ドメイン)とLNSドメインを隔てる3つのEGF様ドメインepidermal growth factor-like ドメイン)を有している。一方、β-ニューレキシンのLNSドメインは一つだけである。両ニューレキシンのC末領域はPDZドメインを有している[2] [3]

分布

 ニューレキシンはほとんどがに発現しているが、膵臓腎臓血管にも発現している[4] [5] [6]

機能

 ニューレキシンは哺乳類脳では、4つの細胞外結合パートナー(ニューロリギン、dystroglycanneurexophilinsLeucine-rich repeat transmembrane neuronal proteins(LRRTMs))が存在している。ニューロリギンはα-ニューレキシン、β-ニューレキシンの両者とCa2+依存性に結合する[2]。ニューロリギンとの結合には、α-ニューレキシンでは6番目のLNSドメインが、β-ニューレキシンでは唯一のLNSドメインが関与している[7]。Dystroglycanは優先的にα-ニューレキシンとCa2+依存性に結合する。また、neurexophilinは特異的にα-ニューレキシンとCa2+非依存性に結合する[2]。Leucine-rich repeat transmembrane neuronal proteinsは興奮性シナプスに局在しており、ニューレキシンと結合し、興奮性シナプスの形成に関与している[8]

 β-ニューレキシンを過剰発現させた非神経細胞は、共培養した神経細胞においてGABA作動性(抑制性)とグルタミン酸作動性(興奮性)神経ポストシナプスへの分化を誘導することから、β-ニューレキシンはシナプス形成の際の細胞と細胞の連結の調節因子として働いているようである[9]

 β-ニューレキシンノックアウトマウスは未だに確立されていない。一方、α-ニューレキシンノックアウトマウスは生存可能であるが、周産期に呼吸器病によって死亡する。α-ニューレキシンノックアウトマウスはGABA作動性神経終末の数を減少させるが、グルタミン酸作動性神経終末には変化を示さない。さらに、α-ニューレキシンノックアウトマウスはCa2+チャネルの機能低下が原因となり、神経伝達物質遊離の障害を示すことが報告されている。すなわち、α-ニューレキシンは抑制性シナプス構築に関与し、Ca2+チャネル機能を調節する役割を有している[9]

 ニューレキシンはCASKMintVeliから成る複合体を介して、シナプス小胞と結合している[9]

血管

 β-ニューレキシンに対する抗体の血管への付加は、ノルアドレナリン誘導血管収縮を減弱させており、血管平滑筋のβ-ニューレキシンはCa2+チャネル調節因子として血管緊張調整に関与しているようである。また、この抗β-ニューレキシン抗体はFGF-2誘導血管新生を減弱させている。 血管においてβ-ニューレキシンは、血管緊張や血管再構築に関与しているようである[9]

腎臓

 ニューレキシンは、糸球体足細胞によって得られるスリット膜に発現しており、スリット膜の構成タンパク質であるCD2APと結合している。スリット膜は、糸球体におけるタンパク質通過防止機能を有しており、ニューレキシンはタンパク尿のバリアー機能に関与すると考えられている[6]

スプライシング変異体

 α-ニューレキシンは選択的スプライシング部位を5つ、β-ニューレキシンは2つ有しており、1000以上のスプライス変異体が存在する[3]

 これらの様々なスプライシング変異体は、細胞―細胞間の認識や接着ならびにシナプス構築などの過程に重要な役割を有していることが議論されており、現在までにsplice site 4 insert (S4)が結合選択性やシナプス機能を調節していることが報告されている。例えば、S4を有していないβ-ニューレキシン(-S4 β-ニューレキシン)は、splicing site B(SB)の有無に関わらずニューロリギン1(+SB and –SBニューロリギン1)とニューロリギン2(SBを有さない)と高親和性に結合するが、β-ニューレキシンへのS4の付加は、+SBニューロリギン1との結合親和性を低下させる。

 また、グルタミン酸作動性・GABA作動性神経シナプスの構築に関して、β-ニューレキシンへのsplice site 4 insertの付加(+S4 β-ニューレキシン)は、グルタミン酸作動性神経シナプス後部タンパク質であるニューロリギン1/3/4とPSD95のクラスタリング能を減少させるが、GABA作動性神経後シナプスタンパク質であるニューロリギン2とgephyrinのクラスタリング能には影響しない。また、ニューロリギン2(ほとんどがsplice site B insertを含んでいない:-Bニューロリギン)は+BニューロリギンよりもVGATのクラスタリングを促進する。このように、+S4 β-ニューレキシンと-Bニューロリギンは共にGABA作動性神経シナプスの分化を促進し、一方で、-S4 β-ニューレキシンと+Bニューロリギン1は共にグルタミン酸作動性神経シナプスの分化を促進している。

 鶏交感神経では、+S4ニューレキシンと-S4ニューレキシンの転写産物の比率は、成長や培養実験における成長因子の付加に応じて変化する[2]

ニューレキシン類似タンパク質(CASPRs)

 CASPRscontactin-associated proteins)はα-ニューレキシンと類似の構造を有するが、α-ニューレキシンが含んでいない細胞外ドメインを有している。ニューレキシンの様に細胞接着分子として機能しているが、主に、神経細胞とグリア細胞の接着に関与している[9]

疾患との関連

 ニューレキシン1遺伝子で7つの点変異と2つのdistinct translocation event、4つのdifferent large-scale deletionが自閉症患者において発見されている[7]

 ニューレキシン1遺伝子のニューレキシン1βではなく、ニューレキシン1αをコードしている配列における欠失が統合失調症患者において発見されている[7]。また、nニューレキシン1の遺伝子多型ニコチン依存症が関係していることが報告されている[10]

 また、ニューレキシン2の短縮型変異が自閉症患者において発見されている[11]

 ニューレキシン3は依存のしやすさと関係していると考えられており、薬物依存肥満のリスクとニューレキシン3の遺伝子多型が関わっている。さらに、ニューレキシン3の遺伝子多型は衝動性と関係しており、男性にのみこの関係性があることが報告されている[12]

参考文献

  1. Missler, M., & Südhof, T.C. (1998).
    Neurexins: three genes and 1001 products. Trends in genetics : TIG, 14(1), 20-6. [PubMed:9448462] [WorldCat] [DOI]
  2. 2.0 2.1 2.2 2.3 Craig, A.M., & Kang, Y. (2007).
    Neurexin-neuroligin signaling in synapse development. Current opinion in neurobiology, 17(1), 43-52. [PubMed:17275284] [PMC] [WorldCat] [DOI]
  3. 3.0 3.1 Lisé, M.F., & El-Husseini, A. (2006).
    The neuroligin and neurexin families: from structure to function at the synapse. Cellular and molecular life sciences : CMLS, 63(16), 1833-49. [PubMed:16794786] [WorldCat] [DOI]
  4. Ushkaryov, Y.A., Rohou, A., & Sugita, S. (2008).
    alpha-Latrotoxin and its receptors. Handbook of experimental pharmacology, (184), 171-206. [PubMed:18064415] [PMC] [WorldCat] [DOI]
  5. Arese, M., Serini, G., & Bussolino, F. (2011).
    Nervous vascular parallels: axon guidance and beyond. The International journal of developmental biology, 55(4-5), 439-45. [PubMed:21858769] [WorldCat] [DOI]
  6. 6.0 6.1 Saito, A., Miyauchi, N., Hashimoto, T., Karasawa, T., Han, G.D., Kayaba, M., ..., & Kawachi, H. (2011).
    Neurexin-1, a presynaptic adhesion molecule, localizes at the slit diaphragm of the glomerular podocytes in kidneys. American journal of physiology. Regulatory, integrative and comparative physiology, 300(2), R340-8. [PubMed:21048075] [WorldCat] [DOI]
  7. 7.0 7.1 7.2 Südhof, T.C. (2008).
    Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215), 903-11. [PubMed:18923512] [PMC] [WorldCat] [DOI]
  8. Ko, J., Fuccillo, M.V., Malenka, R.C., & Südhof, T.C. (2009).
    LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron, 64(6), 791-8. [PubMed:20064387] [PMC] [WorldCat] [DOI]
  9. 9.0 9.1 9.2 9.3 9.4 Bottos, A., Rissone, A., Bussolino, F., & Arese, M. (2011).
    Neurexins and neuroligins: synapses look out of the nervous system. Cellular and molecular life sciences : CMLS, 68(16), 2655-66. [PubMed:21394644] [WorldCat] [DOI]
  10. Sato, N., Kageyama, S., Chen, R., Suzuki, M., Tanioka, F., Kamo, T., ..., & Sugimura, H. (2010).
    Association between neurexin 1 (NRXN1) polymorphisms and the smoking behavior of elderly Japanese. Psychiatric genetics, 20(3), 135-6. [PubMed:20414139] [WorldCat] [DOI]
  11. Gauthier, J., Siddiqui, T.J., Huashan, P., Yokomaku, D., Hamdan, F.F., Champagne, N., ..., & Rouleau, G.A. (2011).
    Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Human genetics, 130(4), 563-73. [PubMed:21424692] [PMC] [WorldCat] [DOI]
  12. Stoltenberg, S.F., Lehmann, M.K., Christ, C.C., Hersrud, S.L., & Davies, G.E. (2011).
    Associations among types of impulsivity, substance use problems and neurexin-3 polymorphisms. Drug and alcohol dependence, 119(3), e31-8. [PubMed:21676558] [PMC] [WorldCat] [DOI]