「コネクトーム」の版間の差分

編集の要約なし
 
(2人の利用者による、間の4版が非表示)
27行目: 27行目:
 歴史的には、簡素な解剖用具などを用いて[[神経線維]]を観察することから、[[目]]と[[脳]]など神経組織同士を接続している構造が存在することは想像されていた(例:[[wj:ルネ・デカルト|デカルト]]、1677年、'''図1''')。
 歴史的には、簡素な解剖用具などを用いて[[神経線維]]を観察することから、[[目]]と[[脳]]など神経組織同士を接続している構造が存在することは想像されていた(例:[[wj:ルネ・デカルト|デカルト]]、1677年、'''図1''')。


 19世紀末になると、[[wj:サンティアゴ・ラモン・イ・カハール|Santiago Rámon y Cajal]](1852-1934)が、個々の神経細胞の形態を明確に染め出すことを可能にした[[ゴルジ染色|Golgi染色]]と[[光学顕微鏡]]を用いることで、脳が多数の神経細胞とそれらの結合によって成り立っていることを提唱した('''図2''')。以後、神経細胞の間の結合を記述する研究は盛んに行われてきた<ref><pubmed>21782932</pubmed></ref><ref>'''Larry Swanson, Jeffrey W. Lichtman'''<br>From Cajal to Connectome and Beyond<br>''Annual Reveiw of Neuroscience'', in press</ref>。Golgi染色や[[ニッスル染色|Nissl染色]]などを施した連続切片を観察する時代を経て、20世紀中頃になると脳損傷後の変性神経線維をNauta法などで染色することで、神経回路の存在を確認する時代になった。
 19世紀末になると、[[wj:サンティアゴ・ラモン・イ・カハール|Santiago Rámon y Cajal]](1852-1934)が、個々の神経細胞の形態を明確に染め出すことを可能にした[[ゴルジ染色|Golgi染色]]と[[光学顕微鏡]]を用いることで、脳が多数の神経細胞とそれらの結合によって成り立っていることを提唱した('''図2''')。以後、神経細胞の間の結合を記述する研究は盛んに行われてきた<ref><pubmed>21782932</pubmed></ref><ref><pubmed>27442070</pubmed></ref>。Golgi染色や[[ニッスル染色|Nissl染色]]などを施した連続切片を観察する時代を経て、20世紀中頃になると脳損傷後の変性神経線維をNauta法などで染色することで、神経回路の存在を確認する時代になった。


 1970年ごろになると、放射性[[wj:アミノ酸|アミノ酸]]や、[[wj:酵素|酵素]]([[西洋ワサビペルオキシダーゼ]] ([[horseradish peroxidase]]; [[HRP]]))などの[[軸索輸送]]を利用することで、神経回路の観察が簡便に行われるようになった。更に、1980年代には、脂溶性carbocyanine[[蛍光色素]]などの生体結合特性を持った蛍光色素([[DiI]]など)、[[wj:植物レクチン|植物レクチン]]([[wheat germ agglutinin]] ([[wheat germ agglutinin|WGA]])、[[phytohaemagglutinin]] ([[phytohaemagglutinin|PHA-L]])など)、[[ビオチン]]誘導体 ([[biocytin]], [[Neurobiotin]]など)、軸索を効率的に移動する[[コレラ毒素]]サブユニット等の高感度トレーサーが開発され、多くの研究者に汎用されるようになった。
 1970年ごろになると、放射性[[wj:アミノ酸|アミノ酸]]や、[[wj:酵素|酵素]]([[西洋ワサビペルオキシダーゼ]] ([[horseradish peroxidase]]; [[HRP]]))などの[[軸索輸送]]を利用することで、神経回路の観察が簡便に行われるようになった。更に、1980年代には、脂溶性carbocyanine[[蛍光色素]]などの生体結合特性を持った蛍光色素([[DiI]]など)、[[wj:植物レクチン|植物レクチン]]([[wheat germ agglutinin]] ([[wheat germ agglutinin|WGA]])、[[phytohaemagglutinin]] ([[phytohaemagglutinin|PHA-L]])など)、[[ビオチン]]誘導体 ([[biocytin]], [[Neurobiotin]]など)、軸索を効率的に移動する[[コレラ毒素]]サブユニット等の高感度トレーサーが開発され、多くの研究者に汎用されるようになった。
73行目: 73行目:
 当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、[[Brainbow]]と呼ばれる技術である<ref><pubmed>18446160</pubmed></ref>(図4)。この技術は、ランダムに、異なる色を持ついくつかの蛍光タンパク質の組み合わせの発現を利用したもので、 各ニューロンは、Creリコンビナーゼによる基質となる[[lox配列]]の組み換えを利用することで、異なる色の蛍光を発色することになり、細胞体とその突起が異なる色として区別することが可能になっている。
 当初は、個々の神経細胞を蛍光タンパク質などで標識する方法が用いられていたが、コネクトーム構築には、多数の神経細胞を同時に観察する必要がある。そのために開発された方法論の1つが、[[Brainbow]]と呼ばれる技術である<ref><pubmed>18446160</pubmed></ref>(図4)。この技術は、ランダムに、異なる色を持ついくつかの蛍光タンパク質の組み合わせの発現を利用したもので、 各ニューロンは、Creリコンビナーゼによる基質となる[[lox配列]]の組み換えを利用することで、異なる色の蛍光を発色することになり、細胞体とその突起が異なる色として区別することが可能になっている。


 これらの遺伝学的なツール(ドライバー、レポーター)の利用には、トランスジェニック動物、[[ノックイン動物]]、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能である[[アデノ随伴ウイルスベクター|アデノ随伴ウイルス(AAV)ベクター]]は、広く用いられている。また、[[CRISPR・CAS9法]]の開発によって簡便になった[[ゲノム編集]]の技術の発達とともに、このような遺伝学的ツールはますます広汎に用いられるようになると予想される。
 これらの遺伝学的なツール(ドライバー、レポーター)の利用には、トランスジェニック動物、[[ノックイン動物]]、そして各種ウイルスベクターを用いることができる。中でも、神経細胞に効率的に遺伝子導入が可能である[[アデノ随伴ウイルスベクター|アデノ随伴ウイルス(AAV)ベクター]]は、広く用いられている。また、[[CRISPR/Cas9]]法の開発によって簡便になった[[ゲノム編集]]の技術の発達とともに、このような遺伝学的ツールはますます広汎に用いられるようになると予想される。


 特に、遺伝的なリポーターとして、電子顕微鏡でその発現を観察できる方法は、[[コネクトーム#電子顕微鏡|上記]]の全体を電子顕微鏡で再構築する方法と併用することで、様々なコンテキストで利用可能になるので注目される<ref><pubmed>25362474</pubmed></ref>。とりわけ、最近開発された[[ARTEMIS法]]は、[[ペルオキシダーゼ]]活性を持つレポーター遺伝子を発現した神経細胞を、高品質な電子顕微鏡画像の中で識別することができる<ref>'''Maximilian Joesch, David Mankus, Masahito Yamagata, Ali Shahbazi, Richard Schalek, Adi Suissa-Peleg, Markus Meister, Jeff W. Lichtman, Walter J. Scheirer, Joshua R. Sanes''' <br>Reconstruction of genetically identified neurons imaged by serial-section electron microscopy.<br>eLife: 2016, in press</ref>。
 特に、遺伝的なリポーターとして、電子顕微鏡でその発現を観察できる方法は、[[コネクトーム#電子顕微鏡|上記]]の全体を電子顕微鏡で再構築する方法と併用することで、様々なコンテキストで利用可能になるので注目される<ref><pubmed>25362474</pubmed></ref>。とりわけ、最近開発された[[ARTEMIS法]]は、[[ペルオキシダーゼ]]活性を持つレポーター遺伝子を発現した神経細胞を、高品質な電子顕微鏡画像の中で識別することができる<ref><pubmed>27383271</pubmed></ref>。


 また、神経細胞同士の結合を記述するコネクトームの本質の一面は、シナプスを介した神経細胞間の[[細胞接着]]の記述でもある。シナプス結合しているパートナーを調べるために、シナプス結合したパートナー細胞同士のシナプス結合を[[シナプス接着分子]]に融合させた分割GFPで検出する[[GRASP法]]という方法が開発され、線虫、ショウジョウバエなどで利用されている<ref><pubmed>22221865</pubmed></ref><ref><pubmed>22355283</pubmed></ref>。また、GRASP法の他にも、その感度の低さを補うことが可能な[[split HRP法]]が開発され、哺乳類の神経系でも利用できることが示された<ref><pubmed>27240195</pubmed></ref>。
 また、神経細胞同士の結合を記述するコネクトームの本質の一面は、シナプスを介した神経細胞間の[[細胞接着]]の記述でもある。シナプス結合しているパートナーを調べるために、シナプス結合したパートナー細胞同士のシナプス結合を[[シナプス接着分子]]に融合させた分割GFPで検出する[[GRASP法]]という方法が開発され、線虫、ショウジョウバエなどで利用されている<ref><pubmed>22221865</pubmed></ref><ref><pubmed>22355283</pubmed></ref>。また、GRASP法の他にも、その感度の低さを補うことが可能な[[split HRP法]]が開発され、哺乳類の神経系でも利用できることが示された<ref><pubmed>27240195</pubmed></ref>。
107行目: 107行目:
 更に、安静状態にある脳での活動の同調の観察から、「[[Default mode network(DMN)]]」と呼ばれる複数脳領域を結ぶネットワークが意識や精神・神経疾患などについての理解の観点から注目されている<ref><pubmed>25938726</pubmed></ref>。DMNは、機能的にはネットワーク内の領域同士の何らかの結合性と関係していると考えられるが、物理的な結合性であるコネクトームとどのような関係にあるのかは、今後の課題である。
 更に、安静状態にある脳での活動の同調の観察から、「[[Default mode network(DMN)]]」と呼ばれる複数脳領域を結ぶネットワークが意識や精神・神経疾患などについての理解の観点から注目されている<ref><pubmed>25938726</pubmed></ref>。DMNは、機能的にはネットワーク内の領域同士の何らかの結合性と関係していると考えられるが、物理的な結合性であるコネクトームとどのような関係にあるのかは、今後の課題である。
   
   
 ⼀⽅、[[拡散MRI]]([[dMRI]])、テンソルMRI、そしてより新しい方法である[[拡散スペクトラムイメージング]] ([[diffusion spectrum imaging]], [[DSI]])と[[拡散強調イメージング]] ([[High angular resolution diffusion imaging, HARDI]])は、脳内にある[[軸索]]の束となった⻑距離の接続の様⼦をマッピングする。この⽅法を使うと、⽣きた脳の中で、そのまま神経の⾛⾏を観察することができる。しかし、神経線維の⾛⾏をみているだけで、実際の結合性を⾒ているものではないが、今後のコネクトーム理解の方法論として期待ができる<ref>http://www.the-scientist.com/?articles.view/articleNo/41266/title/White-s-the-Matter/</ref>。
 ⼀⽅、米[[wj: Harvard大学|Harvard大学]]/MGH(マサチューセッツ総合病院Martinos Center)と南カリフォルニア大学(以前はカリフォルニア大学ロスアンゼルス校)を中心に進められてきたのは、[[拡散MRI]]([[dMRI]])、テンソルMRIを用いる方法である。更に、新しい方法である[[拡散スペクトラムイメージング]] ([[diffusion spectrum imaging]], [[diffusion spectrum imaging|DSI]])と[[拡散強調イメージング]] ([[High angular resolution diffusion imaging, HARDI]])は、脳内にある[[軸索]]の束となった⻑距離の接続の様⼦をマッピングする。これらの⽅法を使うと、⽣きた脳の中で、そのまま神経の⾛⾏を観察することができる。しかし、神経線維の⾛⾏をみているだけで、実際の結合性を⾒ているものではないが、今後のコネクトーム理解の方法論として期待ができる<ref>http://www.the-scientist.com/?articles.view/articleNo/41266/title/White-s-the-Matter/</ref>。


==機能的コネクトーム==
==機能的コネクトーム==