「Engrailed」の版間の差分

編集の要約なし
 
(同じ利用者による、間の3版が非表示)
8行目: 8行目:
英略称:En
英略称:En


{{box|text= ''Engrailed''(''En'')遺伝子は、動物界で広く見られるホメオドメインタンパク質Enをコードする。Enは、転写因子としての機能を持つほか、古典的なシグナルペプチドを持たないにも拘わらずその一部は細胞外に分泌され、更に細胞外から他の細胞内へ移行できるという細胞間シグナル分子としての性質も有する。加えて、eIF4Eに結合し翻訳を促進するという翻訳調節因子としての側面も持つ。脊椎動物は、''Engrailed-1''(''En1'')および''Engrailed-2''(''En2'')の2つのパラログを有しており、これらは中脳—後脳境界の形成、小脳および中脳の発生、神経回路の構築、神経細胞の分化や生存維持において重要な役割を果たす。''En2''は自閉スペクトラム症との関連が示されている一方、''En1''ヘテロ接合性マウスはパーキンソン病に特徴的なドーパミンニューロン減少と運動制御異常を示す。}}
{{box|text= ''Engrailed''(''En'')遺伝子は、動物界で広く見られるホメオドメインタンパク質Enをコードする。Enは、転写因子としての機能を持つほか、古典的なシグナルペプチドを持たないにも拘わらずその一部は細胞外に分泌され、更に細胞外から他の細胞内へ移行できるという細胞間シグナル分子としての性質も有する。加えて、eIF4Eに結合し翻訳を促進するという翻訳調節因子としての側面も持つ。脊椎動物は、''Engrailed-1''(''En1'')および''Engrailed-2''(''En2'')の2つのパラログを有しており、これらは中脳—後脳境界の形成、小脳および中脳の発生、神経回路の構築、神経細胞の分化や生存維持において重要な役割を果たす。''EN2''は自閉スペクトラム症との関連が示されている一方、''En1''ヘテロ接合性マウスはパーキンソン病に特徴的なドーパミンニューロン減少と運動制御異常を示す。}}


== 研究の歴史 ==
== 研究の歴史 ==
15行目: 15行目:
== サブファミリー ==
== サブファミリー ==
=== 無脊椎動物 ===
=== 無脊椎動物 ===
 多くは単一の''en''を有する一方、ショウジョウバエには、''en''と隣接してその[[パラログ]]遺伝子である''[[invected]]''(''[[inv]]'')が存在する<ref name=Gustavson1996><pubmed>8849895</pubmed></ref>。invを欠く個体は生存可能であり、表現型にも顕著な異常は見られないが、''en''と''inv''の二重変異体では''en''単独変異の[[表現型]]が増強されることから、両者は機能的に冗長であると考えられる<ref name=Gustavson1996><pubmed>8849895</pubmed></ref>。
 多くは単一の''en''を有する一方、ショウジョウバエには、''en''と隣接してその[[パラログ]]遺伝子である''[[invected]]''(''[[inv]]'')が存在する<ref name=Gustavson1996><pubmed>8849895</pubmed></ref>。''inv''を欠く個体は生存可能であり、表現型にも顕著な異常は見られないが、''en''と''inv''の二重変異体では''en''単独変異の[[表現型]]が増強されることから、両者は機能的に冗長であると考えられる<ref name=Gustavson1996><pubmed>8849895</pubmed></ref>。
=== 脊椎動物 ===
=== 脊椎動物 ===
 多くは2つの''en''相同遺伝子''En1''および''En2''を有する<ref name=Holland1990><pubmed>1980115</pubmed></ref>。[[ゼブラフィッシュ]]では、それぞれの遺伝子がさらに重複し、''En1''および''En2''が各2コピーずつ存在する<ref name=Force1999><pubmed>10101175</pubmed></ref>。
 多くは2つの''en''相同遺伝子''En1''および''En2''を有する<ref name=Holland1990><pubmed>1980115</pubmed></ref>。[[ゼブラフィッシュ]]では、それぞれの遺伝子がさらに重複し、''En1''および''En2''が各2コピーずつ存在する<ref name=Force1999><pubmed>10101175</pubmed></ref>。
37行目: 37行目:
 EH4は[[ホメオドメイン]]であり、DNAへの結合に関わる<ref name=Kissinger1990><pubmed>1977522</pubmed></ref>。ホメオドメインを構成する3本の[[αヘリックス]]のうち第3ヘリックスと、ホメオドメインのN末端のヘリックスを構成しない数アミノ酸がDNAに結合する<ref name=Kissinger1990><pubmed>1977522</pubmed></ref>。[[SAAB法]]によるとEngrailed単独で最も高い親和性を示すDNA配列はTAATTAである<ref name=Ades1994><pubmed>8049221</pubmed></ref>。また、Exdとのヘテロ二量体化により、EnのDNA結合特異性が変化する<ref name=vanDijk1994><pubmed>7915200</pubmed></ref>。ショウジョウバエ胚における[[ChIP解析]]によるとEnのコンセンサス結合配列はYAATYANBである<ref name=Solano2003><pubmed>12588842</pubmed></ref>。Enの結合親和性は、認識部位に隣接する、認識配列に類似した繰り返し配列を伴うDNA領域により増強される<ref name=Castellanos2020><pubmed>31992709</pubmed></ref>。
 EH4は[[ホメオドメイン]]であり、DNAへの結合に関わる<ref name=Kissinger1990><pubmed>1977522</pubmed></ref>。ホメオドメインを構成する3本の[[αヘリックス]]のうち第3ヘリックスと、ホメオドメインのN末端のヘリックスを構成しない数アミノ酸がDNAに結合する<ref name=Kissinger1990><pubmed>1977522</pubmed></ref>。[[SAAB法]]によるとEngrailed単独で最も高い親和性を示すDNA配列はTAATTAである<ref name=Ades1994><pubmed>8049221</pubmed></ref>。また、Exdとのヘテロ二量体化により、EnのDNA結合特異性が変化する<ref name=vanDijk1994><pubmed>7915200</pubmed></ref>。ショウジョウバエ胚における[[ChIP解析]]によるとEnのコンセンサス結合配列はYAATYANBである<ref name=Solano2003><pubmed>12588842</pubmed></ref>。Enの結合親和性は、認識部位に隣接する、認識配列に類似した繰り返し配列を伴うDNA領域により増強される<ref name=Castellanos2020><pubmed>31992709</pubmed></ref>。


 EH3の大部分とホメオドメインのN末端の一部を含む領域は、細胞表面の[[グリコサミノグリカン]]([[GAG]])との相互作用を通じて、Enの細胞外から細胞内への移行を制御する<ref name=Cardon2023><pubmed>37032404</pubmed></ref>。ホメオドメインのC末端側には、[[核外移行シグナル配列]]([[NES]])/細胞外への分泌シグナルと、細胞外から細胞内への移行シグナル([[膜透過ペプチド]]配列[[penetratin]])が存在する<ref name=Joliot1998><pubmed>9705930</pubmed></ref><ref name=Maizel1999><pubmed>10375508</pubmed></ref>[36]<ref name=Dupont2007><pubmed>17242404</pubmed></ref>。細胞外から細胞内への移行は[[エンドサイトーシス]]と、エンドサイトーシスを介さない直接的移行の2つの様式により起こる<ref name=Dupont2007><pubmed>17242404</pubmed></ref><ref name=Jiao2009><pubmed>19833724</pubmed></ref>。Enの細胞内外への出入りには、[[ホスファチジルイノシトール4,5-ビスリン酸]]([[PIP2]])と[[コレステロール]]が必要である<ref name=Amblard2020b><pubmed>32434869</pubmed></ref>。EnのEH2ドメインのN末端側には高[[セリン]]領域が存在する。[[カゼインキナーゼ2]] ([[CK2]])によるこの領域の[[リン酸化]]は、EnホメオドメインのDNAへの結合を増強する一方<ref name=Bourbon1995><pubmed>7744743</pubmed></ref>、Enの細胞外分泌を阻害する<ref name=Maizel2002><pubmed>12117805</pubmed></ref>。また、Enは他のいくつかのホメオドメインタンパク質([[Bicoid]], [[Emx2]], [[HoxA9]], [[Prh]]など)と同様に、[[真核生物翻訳開始因子4E]] ([[eIF4E]])と結合するが<ref name=Nedelec2004><pubmed>15247416</pubmed></ref>、それらのホメオドメインタンパク質とは異なり<ref name=Topisirovic2005><pubmed>16136508</pubmed></ref>、EH1ドメインがeIF4E結合部位を兼ねることが推定されている(<ref name=Rhoads2009><pubmed>19237539</pubmed></ref>、Alain Prochiantz、私信)。これとは別に、マウスのEn1のホメオドメインN末端に位置するリジンに点突然変異K313Eを導入すると、eIF4Eに結合しなくなる<ref name=Stettler2012><pubmed>22147955</pubmed></ref>。[[Foxa2]]との相互作用には高セリン領域からホメオドメインにかけての領域が関与する<ref name=Foucher2003><pubmed>12642491</pubmed></ref>。
 EH3の大部分とホメオドメインのN末端の一部を含む領域は、細胞表面の[[グリコサミノグリカン]]([[GAG]])との相互作用を通じて、Enの細胞外から細胞内への移行を制御する<ref name=Cardon2023><pubmed>37032404</pubmed></ref>。ホメオドメインのC末端側には、[[核外移行シグナル配列]]([[NES]])/細胞外への分泌シグナルと、細胞外から細胞内への移行シグナル([[膜透過ペプチド]]配列[[penetratin]])が存在する<ref name=Joliot1998><pubmed>9705930</pubmed></ref><ref name=Maizel1999><pubmed>10375508</pubmed></ref><ref name=Dupont2007><pubmed>17242404</pubmed></ref>。細胞外から細胞内への移行は[[エンドサイトーシス]]と、エンドサイトーシスを介さない直接的移行の2つの様式により起こる<ref name=Dupont2007><pubmed>17242404</pubmed></ref><ref name=Jiao2009><pubmed>19833724</pubmed></ref>。Enの細胞内外への出入りには、[[ホスファチジルイノシトール4,5-ビスリン酸]]([[PIP2]])と[[コレステロール]]が必要である<ref name=Amblard2020b><pubmed>32434869</pubmed></ref>。EnのEH2ドメインのN末端側には高[[セリン]]領域が存在する。[[カゼインキナーゼ2]] ([[CK2]])によるこの領域の[[リン酸化]]は、EnホメオドメインのDNAへの結合を増強する一方<ref name=Bourbon1995><pubmed>7744743</pubmed></ref>、Enの細胞外分泌を阻害する<ref name=Maizel2002><pubmed>12117805</pubmed></ref>。また、Enは他のいくつかのホメオドメインタンパク質([[Bicoid]], [[Emx2]], [[HoxA9]], [[Prh]]など)と同様に、[[真核生物翻訳開始因子4E]] ([[eIF4E]])と結合するが<ref name=Nedelec2004><pubmed>15247416</pubmed></ref>、それらのホメオドメインタンパク質とは異なり<ref name=Topisirovic2005><pubmed>16136508</pubmed></ref>、EH1ドメインがeIF4E結合部位を兼ねることが推定されている(<ref name=Rhoads2009><pubmed>19237539</pubmed></ref>、Alain Prochiantz、私信)。これとは別に、マウスのEn1のホメオドメインN末端に位置するリジンに点突然変異K313Eを導入すると、eIF4Eに結合しなくなる<ref name=Stettler2012><pubmed>22147955</pubmed></ref>。[[Foxa2]]との相互作用には高セリン領域からホメオドメインにかけての領域が関与する<ref name=Foucher2003><pubmed>12642491</pubmed></ref>。


== 発現 ==
== 発現 ==
71行目: 71行目:


=== 転写の標的遺伝子 ===
=== 転写の標的遺伝子 ===
 脊椎動物では、神経系におけるEnの標的遺伝子として、[[微小管結合タンパク質1b]]、および[[長鎖散在反復配列]][[LINE-1]]がin vivoで同定されている<ref name=Foucher2003><pubmed>12642491</pubmed></ref><ref name=deThe2018><pubmed>29941661</pubmed></ref>。また、ニワトリ初期胚の脳において、Pax6が標的遺伝子の候補として同定されている<ref name=Logan1992><pubmed>1363401</pubmed></ref>。
 脊椎動物では、神経系におけるEnの標的遺伝子として、[[微小管結合タンパク質1b]]、および[[長鎖散在反復配列]][[LINE-1]]がin vivoで同定されている<ref name=Foucher2003><pubmed>12642491</pubmed></ref><ref name=deThe2018><pubmed>29941661</pubmed></ref>。また、ニワトリ初期胚の脳において、''Pax6''が標的遺伝子の候補として同定されている<ref name=Araki1999></ref>。


 脊椎動物の初期胚の脳における、''En''による''Wnt1''、''Pax2''、''Fgf8''の誘導は直接的なものではないことを先に述べたが、同様に、''En''による[[軸索ガイダンス]]や細胞のソーティングに関わる細胞表面タンパク質をコードする[[EphrinA2]]や[[EphrinA5]]の発現誘導も<ref name=Logan1996><pubmed>8805331</pubmed></ref><ref name=Shigetani1996><pubmed>9129179</pubmed></ref><ref name=Lee1997><pubmed>9056772</pubmed></ref>、間接的な制御であると推定される<ref name=Logan1992><pubmed>1363401</pubmed></ref>。
 脊椎動物の初期胚の脳における、''En''による''Wnt1''、''Pax2''、''Fgf8''の誘導は直接的なものではないことを先に述べたが、同様に、''En''による[[軸索ガイダンス]]や細胞のソーティングに関わる細胞表面タンパク質をコードする[[EphrinA2]]や[[EphrinA5]]の発現誘導も<ref name=Logan1996><pubmed>8805331</pubmed></ref><ref name=Shigetani1996><pubmed>9129179</pubmed></ref><ref name=Lee1997><pubmed>9056772</pubmed></ref>、間接的な制御であると推定される<ref name=Araki1999></ref>。


=== 中脳および後脳の初期発生 ===
=== 中脳および後脳の初期発生 ===
 初期胚において、''En1''と''En2''は、中脳後脳境界オーガナイザーの維持や、[[中脳間脳境界]]([[diencephalic–mesencephalic boundary]],[[DMB]])の確立と維持を通じて、発生中の脳の領域化に寄与する<ref name=Joyner1991><pubmed>1672471</pubmed></ref><ref name=Araki1999><pubmed>10529429</pubmed></ref><ref name=Wurst1994><pubmed>7925010</pubmed></ref><ref name=Joyner1996><pubmed>8741855</pubmed></ref><ref name=Matsunaga2000><pubmed>10804178</pubmed></ref><ref name=Scholpp2003><pubmed>12917294</pubmed></ref>。脳の領域化においてEnは専ら転写因子として機能し、細胞間シグナル分子としての役割は小さい、とする報告がある一方<ref name=Lesaffre2007><pubmed>17229313</pubmed></ref>、中脳間脳境界の確立にはEnが分泌されることが必要であることも示されている<ref name=Rampon2015><pubmed>25926358</pubmed></ref>。また、中脳間脳境界と中脳後脳境界の確立にはPbxとの協調も必要である<ref name=Erickson2007><pubmed>16959235</pubmed></ref>。前述の通り、''En1''と''En2''は機能的に冗長ではあるが<ref name=Hanks1998><pubmed>9778510</pubmed></ref>、''En1''は小脳と上丘の発生にE9より前のみ必要であり<ref name=Sgaier2007><pubmed>17537797</pubmed></ref>、''En1''の欠失によりE9.5までに中脳後脳境界近傍で[[細胞死]]が増加する<ref name=Chi2003><pubmed>12736208</pubmed></ref>。一方で、''En1''は[[下丘]]の、''En2''は小脳の発生において、より長期にわたり機能が要求される<ref name=Sgaier2007><pubmed>17537797</pubmed></ref>。さらに、[[脳の領域化]]後においても、''En''は中脳後脳領域内での勾配的または局所的な発現を通じて、領域内のパターン形成に寄与する。この機能は、神経回路形成、特定のニューロンの発生、および中脳後脳内における微細構造の形成に関与する<ref name=Logan1996><pubmed>8805331</pubmed></ref><ref name=Itasaki1991><pubmed>1811932</pubmed></ref><ref name=Millen1995><pubmed>8575294</pubmed></ref><ref name=Omi2014><pubmed>24803658</pubmed></ref>。
 初期胚において、''En1''と''En2''は、中脳後脳境界オーガナイザーの維持や、[[中脳間脳境界]]([[diencephalic–mesencephalic boundary]],[[DMB]])の確立と維持を通じて、発生中の脳の領域化に寄与する<ref name=Joyner1991><pubmed>1672471</pubmed></ref><ref name=Araki1999><pubmed>10529429</pubmed></ref><ref name=Wurst1994><pubmed>7925010</pubmed></ref><ref name=Joyner1996><pubmed>8741855</pubmed></ref><ref name=Matsunaga2000><pubmed>10804178</pubmed></ref><ref name=Scholpp2003><pubmed>12917294</pubmed></ref>。脳の領域化においてEnは専ら転写因子として機能し、細胞間シグナル分子としての役割は小さい、とする報告がある一方<ref name=Lesaffre2007><pubmed>17229313</pubmed></ref>、中脳間脳境界の確立にはEnが分泌されることが必要であることも示されている<ref name=Rampon2015><pubmed>25926358</pubmed></ref>。また、中脳間脳境界と中脳後脳境界の確立にはPbxとの協調も必要である<ref name=Erickson2007><pubmed>16959235</pubmed></ref>。前述の通り、''En1''と''En2''は機能的に冗長ではあるが<ref name=Hanks1995></ref>、''En1''は小脳と上丘の発生にE9より前のみ必要であり<ref name=Sgaier2007><pubmed>17537797</pubmed></ref>、''En1''の欠失によりE9.5までに中脳後脳境界近傍で[[細胞死]]が増加する<ref name=Chi2003><pubmed>12736208</pubmed></ref>。一方で、''En1''は[[下丘]]の、''En2''は小脳の発生において、より長期にわたり機能が要求される<ref name=Sgaier2007><pubmed>17537797</pubmed></ref>。さらに、[[脳の領域化]]後においても、''En''は中脳後脳領域内での勾配的または局所的な発現を通じて、領域内のパターン形成に寄与する。この機能は、神経回路形成、特定のニューロンの発生、および中脳後脳内における微細構造の形成に関与する<ref name=Sgaier2005></ref><ref name=Itasaki1991><pubmed>1811932</pubmed></ref><ref name=Millen1995><pubmed>8575294</pubmed></ref><ref name=Omi2014><pubmed>24803658</pubmed></ref>。


=== 神経回路形成 ===
=== 神経回路形成 ===
83行目: 83行目:
 [[脊髄]]では、''En1''はV1介在ニューロンの特定化には必要ないが、その軸索ガイダンスと軸索束形成に必要である<ref name=Saueressig1999><pubmed>10477289</pubmed></ref>。また、V1ニューロンの一部に由来する[[レンショー細胞]]と[[運動ニューロン]]の抑制性シナプス形成を調節する<ref name=Sapir2004><pubmed>14762144</pubmed></ref>。
 [[脊髄]]では、''En1''はV1介在ニューロンの特定化には必要ないが、その軸索ガイダンスと軸索束形成に必要である<ref name=Saueressig1999><pubmed>10477289</pubmed></ref>。また、V1ニューロンの一部に由来する[[レンショー細胞]]と[[運動ニューロン]]の抑制性シナプス形成を調節する<ref name=Sapir2004><pubmed>14762144</pubmed></ref>。


 発生中の体幹部において、軸上筋神経は体節中の''En1''陽性領域に誘引される一方、軸下筋神経は''En''陽性領域を忌避する<ref name=Ahmed2017><pubmed>28807781</pubmed></ref>。また、四肢背側の筋肉に投射する脊髄運動ニューロン軸索に対し、肢芽腹側の''En1''は細胞間シグナル分子として直接的に反発効果を呈すると共に、転写因子として制御下のEphrinA5を介して間接的にも反発効果を示す<ref name=Huettl2015><pubmed>25710467</pubmed></ref>。但し、中脳視蓋とは異なりEn1とEphrinA5との相乗効果は見られず、またEn2はこの軸索に対して反発効果を示さない。
 発生中の体幹部において、軸上筋神経は体節中の''En1''陽性領域に誘引される一方、軸下筋神経は''En''陽性領域を忌避する<ref name=Ahmed2017><pubmed>28807781</pubmed></ref>。また、四肢背側の筋肉に投射する脊髄運動ニューロン軸索に対し、肢芽腹側のEn1は細胞間シグナル分子として直接的に反発効果を呈すると共に、転写因子として制御下のEphrinA5を介して間接的にも反発効果を示す<ref name=Huettl2015><pubmed>25710467</pubmed></ref>。但し、中脳視蓋とは異なりEn1とEphrinA5との相乗効果は見られず、またEn2はこの軸索に対して反発効果を示さない。


=== ニューロンの分化と維持 ===
=== ニューロンの分化と維持 ===
 ''En1''、''En2''は中脳ドーパミンニューロンの維持に、細胞自律的に必要であり<ref name=Simon2001><pubmed>11312297</pubmed></ref><ref name=Alberi2004><pubmed>15175251</pubmed></ref>、LINE-1の発現抑制を通じて、[[酸化ストレス]]から中脳ドーパミンニューロンを保護する<ref name=deThe2018><pubmed>29941661</pubmed></ref><ref name=Alvarez2011><pubmed>21892157</pubmed></ref>。また、''En1''は上オリーブ核ニューロンの、''En1''、''En2''は共に[[小脳核]]内側の一部の[[興奮性ニューロン]]および縫線核[[5-HT]]ニューロンの分化と維持に必要である<ref name=Alberi2004><pubmed>15175251</pubmed></ref><ref name=Fox2012><pubmed>22674259</pubmed></ref><ref name=Krishnamurthy2024><pubmed>38912572</pubmed></ref>。更に、''En2''は[[大脳基底核]]由来[[神経幹細胞]]からのGABA作動性ニューロンの分化に必要である<ref name=Boschian2018><pubmed>29964155</pubmed></ref>。加えて、En1およびEn2は[[培養海馬細胞]]の樹状突起の複雑度やシナプスに差次的に影響する<ref name=Soltani2017><pubmed>28809922</pubmed></ref>。
 ''En1''、''En2''は中脳ドーパミンニューロンの維持に、細胞自律的に必要であり<ref name=Simon2001><pubmed>11312297</pubmed></ref><ref name=Alberi2004><pubmed>15175251</pubmed></ref>、LINE-1の発現抑制を通じて、[[酸化ストレス]]から中脳ドーパミンニューロンを保護する<ref name=deThe2018><pubmed>29941661</pubmed></ref><ref name=Alvarez2011><pubmed>21892157</pubmed></ref>。また、''En1''は上オリーブ核ニューロンの、''En1''、''En2''は共に[[小脳核]]内側の一部の[[興奮性ニューロン]]および縫線核[[5-HT]]ニューロンの分化と維持に必要である<ref name=Altieri2015><pubmed>26542008</pubmed></ref><ref name=Fox2012><pubmed>22674259</pubmed></ref><ref name=Krishnamurthy2024><pubmed>38912572</pubmed></ref>。更に、''En2''は[[大脳基底核]]由来[[神経幹細胞]]からのGABA作動性ニューロンの分化に必要である<ref name=Boschian2018><pubmed>29964155</pubmed></ref>。加えて、En1およびEn2は[[培養海馬細胞]]の樹状突起の複雑度やシナプスに差次的に影響する<ref name=Soltani2017><pubmed>28809922</pubmed></ref>。


 マウス成体の脊髄のV1介在ニューロンで発現するEn1は、[[α運動ニューロン]]に対し[[傍分泌性]]の[[神経栄養活性]]を有する<ref name=Leboeuf2023><pubmed>37534581</pubmed></ref>。
 マウス成体の脊髄のV1介在ニューロンで発現するEn1は、[[α運動ニューロン]]に対し[[傍分泌性]]の[[神経栄養活性]]を有する<ref name=Leboeuf2023><pubmed>37534581</pubmed></ref>。
95行目: 95行目:


=== 自閉スペクトラム症 ===
=== 自閉スペクトラム症 ===
 ''En2''の多型と[[自閉スペクトラム症]]との関連は1995年に最初に示された<ref name=Petit1995><pubmed>7643354</pubmed></ref>。''En2''は患者で過剰発現する<ref name=James2014><pubmed>25290267</pubmed></ref>。また、自閉スペクトラム症に関連する''En2''のイントロン中の2つのSNPは、発現上昇に繋がる<ref name=Benayed2009><pubmed>19615670</pubmed></ref>。''En2''欠損マウスは患者と類似した行動、および学習の障害や、小脳の形態異常を示す<ref name=Cheh2006><pubmed>16935268</pubmed></ref>。また、患者において[[味覚]]異常が報告されているが、''En2''欠損マウスでも[[塩化ナトリウム]]への嗜好性が強まる<ref name=Gupta2018><pubmed>29953887</pubmed></ref>。成人患者に対する慢性ストレスが、行動上の、あるいは神経解剖学的な表現型を増悪するかどうかは明らかで無いが、慢性的な[[環境ストレス]]に曝露した''En2''欠損マウスでは、行動上の、あるいは神経解剖学的な表現型が増悪することが報告されている<ref name=Phan2021><pubmed>34271036</pubmed></ref>。
 ''EN2''の多型と[[自閉スペクトラム症]]との関連は1995年に最初に示された<ref name=Petit1995><pubmed>7643354</pubmed></ref>。''EN2''は患者で過剰発現する<ref name=James2014><pubmed>25290267</pubmed></ref>。また、自閉スペクトラム症に関連する''EN2''のイントロン中の2つのSNPは、発現上昇に繋がる<ref name=Benayed2009><pubmed>19615670</pubmed></ref>。''En2''欠損マウスは患者と類似した行動、および学習の障害や、小脳の形態異常を示す<ref name=Cheh2006><pubmed>16935268</pubmed></ref>。また、患者において[[味覚]]異常が報告されているが、''En2''欠損マウスでも[[塩化ナトリウム]]への嗜好性が強まる<ref name=Gupta2018><pubmed>29953887</pubmed></ref>。成人患者に対する慢性ストレスが、行動上の、あるいは神経解剖学的な表現型を増悪するかどうかは明らかで無いが、慢性的な[[環境ストレス]]に曝露した''En2''欠損マウスでは、行動上の、あるいは神経解剖学的な表現型が増悪することが報告されている<ref name=Phan2021><pubmed>34271036</pubmed></ref>。


=== 統合失調症 ===
=== 統合失調症 ===
 ''En1''のいくつかの[[単一塩基多型]]は[[統合失調症]]の症状および[[抗精神病薬]]の効果と関連する<ref name=Webb2008><pubmed>18698228</pubmed></ref>。
 ''EN1''のいくつかの[[単一塩基多型]]は[[統合失調症]]の症状および[[抗精神病薬]]の効果と関連する<ref name=Webb2008><pubmed>18698228</pubmed></ref>。


== 参考文献 ==
== 参考文献 ==