「エンドソーム」の版間の差分

①図のタイトルの追加、②図の説明の追加、③ホスファチジルイノシトールへの言及の追加、④シナプス小胞の形成・シナプス可塑性の追加
(①図のタイトルの追加、②図の説明の追加、③ホスファチジルイノシトールへの言及の追加、④シナプス小胞の形成・シナプス可塑性の追加)
(①図のタイトルの追加、②図の説明の追加、③ホスファチジルイノシトールへの言及の追加、④シナプス小胞の形成・シナプス可塑性の追加)
17行目: 17行目:
=== 後期エンドソーム ===
=== 後期エンドソーム ===


 後期エンドソームは、[[リソソーム]]と融合することで内容物を分解へと導くオルガネラである<ref name=ref3><pubmed>18502633</pubmed> </ref><ref name=ref4><pubmed>21878991</pubmed></ref>。初期エンドソームにおいて分解経路へと選別された物質は、後期エンドソームを介して最終的にリソソームで分解される。ただし、後期エンドソームは初期エンドソームが成熟したオルガネラであるため、分解される物質は膜輸送によって初期エンドソームから後期エンドソームへと輸送されるわけではない。後期エンドソームは初期エンドソームから成熟するにともない、[[プロトンポンプ]]の働きによって内腔の[[wikipedia:JA:pH|pH]]が低下するとともに、[[wikipedia:JA:核|核]]近傍へと移動していく。さらに、後期エンドソームではシグナル伝達因子受容体のような[[wikipedia:JA:膜タンパク質|膜貫通型タンパク質]]がモノユビキチン化などによって認識され、エンドソーム膜ごと内腔へとくびり取られる。このため、後期エンドソームの内部には多数の内腔小胞が存在することになり、後期エンドソームは多胞体(MVB: multivesicular body)とも呼ばれる。後期エンドソームがリソソームと融合すると、内腔小胞ごと膜貫通型のタンパク質も分解される。
 後期エンドソームは、[[リソソーム]]と融合することで内容物を分解へと導くオルガネラである<ref name=ref3><pubmed>18502633</pubmed> </ref><ref name=ref4><pubmed>21878991</pubmed></ref>。初期エンドソームにおいて分解経路へと選別された物質は、後期エンドソームを介して最終的にリソソームで分解される。ただし、後期エンドソームは初期エンドソームが成熟したオルガネラであるため、分解される物質は膜輸送によって初期エンドソームから後期エンドソームへと輸送されるわけではない。後期エンドソームは初期エンドソームから成熟するにともない、[[プロトンポンプ]]の働きによって内腔の[[wikipedia:JA:pH|pH]]が低下するとともに、[[wikipedia:JA:核|核]]近傍へと[[移動]]していく。さらに、後期エンドソームではシグナル伝達因子受容体のような[[wikipedia:JA:膜タンパク質|膜貫通型タンパク質]]がモノユビキチン化などによって認識され、エンドソーム膜ごと内腔へとくびり取られる。このため、後期エンドソームの内部には多数の内腔小胞が存在することになり、後期エンドソームは多胞体(MVB: multivesicular body)とも呼ばれる。後期エンドソームがリソソームと融合すると、内腔小胞ごと膜貫通型のタンパク質も分解される。


 また、後期エンドソームはゴルジ体との間で膜輸送による物質のやり取りを行っているため、後期エンドソームはリソソームで働く分解酵素をゴルジ体からリソソームへと輸送するための中継オルガネラとしても機能している<ref name=ref9><pubmed>19879268</pubmed></ref>。後期エンドソームを識別するためのマーカータンパク質としては、Rab7や[[wikipedia:Mannose_6-phosphate_receptor|マンノース-6リン酸受容体]](M6PR)が有名である。また、後期エンドソームには、ホスファチジルイノシトールの一種であるPI(3,5)P2が豊富に存在しており、MVBの形成促進などに関与することが知られている<ref name=ref8><pubmed>15170460</pubmed></ref>。
 また、後期エンドソームはゴルジ体との間で膜輸送による物質のやり取りを行っているため、後期エンドソームはリソソームで働く分解酵素をゴルジ体からリソソームへと輸送するための中継オルガネラとしても機能している<ref name=ref9><pubmed>19879268</pubmed></ref>。後期エンドソームを識別するためのマーカータンパク質としては、Rab7や[[wikipedia:Mannose_6-phosphate_receptor|マンノース-6リン酸受容体]](M6PR)が有名である。また、後期エンドソームには、ホスファチジルイノシトールの一種であるPI(3,5)P2が豊富に存在しており、MVBの形成促進などに関与することが知られている<ref name=ref8><pubmed>15170460</pubmed></ref>。
29行目: 29行目:
== エンドソームを介する膜輸送と神経機能 ==
== エンドソームを介する膜輸送と神経機能 ==


エンドソームは小胞輸送(膜輸送)の中継地点として機能することで細胞内の物質輸送を司ることから、神経機能をはじめとする様々な生命現象において重要な役割を果たしている。
エンドソームは[[小胞輸送]](膜輸送)の中継地点として機能することで細胞内の物質輸送を司ることから、神経機能をはじめとする様々な生命現象において重要な役割を果たしている。


===神経成長因子のシグナル伝達===
===神経成長因子のシグナル伝達===
 神経細胞の分化・生存を制御する[[神経成長因子]](NGF: nerve growth factor)の受容体[[TrkA]]はエンドサイトーシスによって初期エンドソームへと輸送されたのち、後期エンドソームを介してリソソームへと輸送される<ref name=ref15><pubmed>17917104</pubmed></ref>(図1)。TrkAをリソソームへと輸送し分解へと導くことは、NGFによるシグナル伝達を適切なタイミングで止める上で重要と考えられている。実際、TrkA の初期エンドソームへの輸送は低分子量Gタンパク質のRab5によって制御されており、Rab5の機能が損なわれると神経細胞の分化が過度に進行することが報告されている<ref name=ref16><pubmed>17267689</pubmed></ref>。さらに、TrkAの後期エンドソームからリソソームへの輸送はRab7によって制御されており、Rab7の機能が損なわれることによっても神経細胞の分化が過度に進行することが報告されている<ref name=ref17><pubmed>16306406</pubmed></ref>。
 神経細胞の[[分化]]・生存を制御する[[神経成長因子]](NGF: nerve growth factor)の受容体[[TrkA]]はエンドサイトーシスによって初期エンドソームへと輸送されたのち、後期エンドソームを介してリソソームへと輸送される<ref name=ref15><pubmed>17917104</pubmed></ref>(図1)。TrkAをリソソームへと輸送し分解へと導くことは、NGFによるシグナル伝達を適切なタイミングで止める上で重要と考えられている。実際、TrkA の初期エンドソームへの輸送は低分子量Gタンパク質のRab5によって制御されており、Rab5の機能が損なわれると神経細胞の分化が過度に進行することが報告されている<ref name=ref16><pubmed>17267689</pubmed></ref>。さらに、TrkAの後期エンドソームからリソソームへの輸送はRab7によって制御されており、Rab7の機能が損なわれることによっても神経細胞の分化が過度に進行することが報告されている<ref name=ref17><pubmed>16306406</pubmed></ref>。


===神経細胞の移動・形態形成===
===神経細胞の移動・形態形成===
38行目: 38行目:


===シナプス小胞の形成・シナプス可塑性===
===シナプス小胞の形成・シナプス可塑性===
 エンドソームは、シナプス前終末におけるシナプス小胞のリサイクリングにも密接に関与している。例えば、神経伝達物質の放出後、細胞膜上に移行したシナプス小胞の構成因子はクラスリン依存性のエンドサイトーシスによって取り込まれ、初期エンドソームへと輸送される。そして初期エンドソームにおいてシナプス小胞の構成因子の再選別・再濃縮が行われ、再びシナプス小胞が形成される<ref name=ref25><pubmed>15217342</pubmed></ref>。ただし、シナプス小胞のリサイクリングの全てがこの過程を経るわけではない。さらに、エンドソームは長期増強・長期抑圧などの記憶・学習にも関与することが明らかになっている。例えば、カルシウム流入に伴うAMPA型グルタミン酸受容体のシナプス後膜への輸送は長期増強を促進することが知られているが<ref name=ref26><pubmed>10851179</pubmed></ref>、このAMPA受容体はリサイクリングエンドソームから供給される<ref name=ref27><pubmed>18984164</pubmed></ref>。一方、シナプス後膜上のAMPA型グルタミン酸受容体がエンドサイトーシスによって取り込まれ、初期エンドソームを経由して後期エンドソームへ輸送されると、長期抑圧が促進される<ref name=ref28><pubmed>11439178</pubmed></ref><ref name=ref29><pubmed>12052905</pubmed></ref>。従って、エンドサイトーシスによって初期エンドソームへと取り込まれたAMPA型グルタミン酸受容体を、後期エンドソーム(分解経路)とリサイクリングエンドソーム(リサイクリング経路)のどちらに選別するかは、長期増強・長期抑圧を制御する上で極めて重要である。この選別機構の詳細なメカニズムは未だ明らかになっていないが、興味深いことにAMPA型グルタミン酸受容体の主要なサブユニットであるGluR2は、NMDA刺激依存的に分解経路へ、AMPA刺激依存的にリサイクリング経路へと選別されることが報告されている<ref name=ref30><pubmed>15260958</pubmed></ref>。
 エンドソームは、[[シナプス前終末]]におけるシナプス小胞のリサイクリングにも密接に関与している。例えば、神経伝達物質の放出後、細胞膜上に移行したシナプス小胞の構成因子はクラスリン依存性のエンドサイトーシスによって取り込まれ、初期エンドソームへと輸送される。そして初期エンドソームにおいてシナプス小胞の構成因子の再選別・再濃縮が行われ、再びシナプス小胞が形成される<ref name=ref25><pubmed>15217342</pubmed></ref>。ただし、シナプス小胞のリサイクリングの全てがこの過程を経るわけではない。さらに、エンドソームは長期増強・長期抑圧などの記憶・学習にも関与することが明らかになっている。例えば、カルシウム流入に伴うAMPA型グルタミン酸受容体のシナプス後膜への輸送は長期増強を促進することが知られているが<ref name=ref26><pubmed>10851179</pubmed></ref>、このAMPA受容体はリサイクリングエンドソームから供給される<ref name=ref27><pubmed>18984164</pubmed></ref>。一方、シナプス後膜上のAMPA型グルタミン酸受容体がエンドサイトーシスによって取り込まれ、初期エンドソームを経由して後期エンドソームへ輸送されると、長期抑圧が促進される<ref name=ref28><pubmed>11439178</pubmed></ref><ref name=ref29><pubmed>12052905</pubmed></ref>。従って、エンドサイトーシスによって初期エンドソームへと取り込まれたAMPA型グルタミン酸受容体を、後期エンドソーム(分解経路)とリサイクリングエンドソーム(リサイクリング経路)のどちらに選別するかは、長期増強・長期抑圧を制御する上で極めて重要である。この選別機構の詳細なメカニズムは未だ明らかになっていないが、興味深いことにAMPA型グルタミン酸受容体の主要なサブユニットであるGluR2は、NMDA刺激依存的に分解経路へ、AMPA刺激依存的にリサイクリング経路へと選別されることが報告されている<ref name=ref30><pubmed>15260958</pubmed></ref>。


==関連項目==
==関連項目==
45行目: 45行目:
*[[リソソーム]]
*[[リソソーム]]
*[[Rabファミリー低分子量Gタンパク質]]
*[[Rabファミリー低分子量Gタンパク質]]
(他にございましたら御指摘ください)


== 参考文献 ==
== 参考文献 ==
13

回編集