PSD-95

提供:脳科学辞典
2013年10月31日 (木) 09:43時点におけるTfuruya (トーク | 投稿記録)による版 (ページの作成:「<div align="right"> <font size="+1">坪山 幸太郎、[http://researchmap.jp/tanakasj 田中 慎二]、[http://researchmap.jp/shigeookabe 岡部 繁男]</font><br> ''...」)

(差分) ← 古い版 | 承認済み版 (差分) | 最新版 (差分) | 新しい版 → (差分)
ナビゲーションに移動 検索に移動

坪山 幸太郎、田中 慎二岡部 繁男
東京大学大学院医学系研究科
DOI XXXX/XXXX 原稿受付日:2013年10月31日 原稿完成日:2013年月日
担当編集委員:柚崎 通介(慶應義塾大学 医学部生理学)

 PSD-95(postsynaptic density protein 95)は、シナプス後部の主要な足場タンパク質であり、シナプス後肥厚部(postsynaptic density; PSD)において最も豊富に存在しているタンパク質の一つである。SAP-90 (synapse-associated protein 90)、DLG4 (disks large homolog 4)としても知られている。PSD-95は、足場タンパクとしてNR2A-D、GluR6、neuroligin、nNOSなど様々な分子と相互作用し、シナプス機能の維持や可塑性などに寄与すると考えられている。

 PSDには同様の構造を持ったタンパク質としてPSD-93、SAP97、SAP102が存在し、これらを含めてPSD-95 familyと呼ぶ。これら分子の発達に伴う発現パターンは異なっており、げっ歯類の海馬においては、PSD-95およびPSD-93は生後10日目あたりから発現量が増えるのに対し、SAP102は生後1週齢で既に発現量が高い1。SAP-97については生後2週齢頃から遺伝子発現が増加することが報告されている2。 プロテオミクス解析や全反射顕微鏡を用いたシナプス分子の数の定量結果から、PSD family分子はシナプス後部に300個ほど存在するとされている3,4。

構造

図1.PSD-95の構造
図2.シナプス後部構造におけるPSD-95

 PSD-95はMAGUK(membrane-associated guanylate kinase)familyに属しており、N末端側から、3つのPDZドメイン、1つのSH3(Src homology 3)ドメイン、1つのGK(Guanylate kinase-like)ドメインを持つ。PSD-95のαアイソフォームは、N末端にパルミトイル化反応を受けうる2つのシステインを含み、βアイソフォームはL27ドメインを持つ。N末端のパルミトイル化はPSD-95のシナプス後膜への局在に重要である 5。

PDZ ドメイン

 PDZドメインは、リガンドタンパク質のC末端に結合する90程度のアミノ酸残基を含む構造である(詳細はPDZドメインタンパク質の項を参照)。PSD-95に含まれる、3つのPDZドメインはすべて、リガンドタンパク質のC末端から3番目の位置がセリンまたはスレオニンであるクラスIに分類される。PSD-95のPDZドメインと結合する蛋白質としてNR2A-D、GluR6、nAChRc、ErbB4、Kir2-5、Neuroligin、nNosなどがあげられ、これらのC末端がいずれかのPDZドメインに結合する6。また、AMPARは補助サブユニットであるTARP(transmembrane AMPAR regulatory proteins)がPDZドメインと結合することによって間接的にPSD-95と結合することが示されている7。

SH3ドメイン、GKドメイン

 SH3ドメインとGKドメインはPSD-95のC末端側に位置する。これらのドメインは分子内で相互作用しており、PSD-95の分子的な安定性の向上に役だっていると考えられている。また、この相互作用は分子間でも見られ、複数のPSD-95間における会合にも資している。SH3ドメインやGKドメインには同種の分子だけでなくGKAP、SPAR、AKAP79/150、Pyk2など様々な分子と相互作用する7,8。

シナプス伝達機能への関与

 PSD-95はシナプスを構成する幅広い分子の足場となることで、シナプス機能やシナプス可塑性に重要な役割を果たす。PSD-95の発現を変化させた様々な実験から、PSD-95がシナプス伝達、特にAMPA型グルタミン酸受容体を介したシナプス伝達機能に重要であるという知見が報告されている。海馬スライス培養系においてsh-RNAによりPSD-95をノックダウンした錐体細胞では、AMPA受容体依存性のevoked EPSC振幅およびmEPSC頻度 の低下が見られる9。一方、PSD-95ノックアウトマウスの急性スライスを用いた研究では、AMPA受容体を介したEPSCに変化が見られないと報告されたが10、PSD-93とのダブルノックアウトマウスではEPSCが大きく低下することが分かり、PSD-95単独のノックアウトマウスではその機能がPSD-93によって補償されている可能性が示唆されている 9。さらに、別系統のノックアウトマウスでは、幼若期(生後14-24日)において、AMPAR依存性のevoked EPSC振幅およびmEPSC頻度の低下が見られている11。また、PSD-95を過剰発現させた場合には、evoked EPSC振幅やmEPSC振幅が増加することが報告されている12,13。

 NMDA受容体についても同様の実験が行われている。しかし、PSD-95はNMDA受容体に直接結合するにも関わらず、PSD-95の発現を操作しても、NMDA受容体依存性のEPSCに変化がないことが報告されており9,10、詳細な役割は不明である。

 PSD-95はシナプス伝達の長期可塑性にも関与する。PSD-95ノックアウトマウスの海馬スライスでは、高頻度刺激で生じるシナプス長期増強(long-term potentiation; LTP)が促進される一方で、低頻度刺激で生じるシナプス長期抑制(long-term depression; LTD)は抑制される10。逆に、PSD-95を過剰発現させた細胞では、LTPが抑制され、LTDが亢進する14。ノックアウトマウスにおいても空間学習能力の異常が認められており、脳機能の可塑的な変化が個体レベルでも阻害されることが分かっている10。シナプス長期可塑性を調節する分子機構として、LTDに関しては、PSD-95がLTD発現に必要なシグナルタンパク質であるAKAP79/150とPP2Bの足場となり、NMDA受容体から流入するカルシウムシグナルとこれらシグナルタンパク質を結び付けているとするモデルが提唱されている15。また、シナプスへの局在に重要な295番目のセリン残基がシナプス長期可塑性の発現に重要であることが報告されている16。

参考文献