「GSK-3β」の版間の差分

24 バイト除去 、 2012年9月14日 (金)
編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
{{PBB|geneid=2932}}  
{{PBB|geneid=2932}}  


グリコーゲン合成酵素キナーゼ3 (Glycogen synthase kinase 3; GSK-3)は、プロリン指向性セリン/スレオニリン酸化酵素のひとつであり、最初にグリコーゲン合成酵素をリン酸化して不活化する酵素として見出された。哺乳類では、GSK-3は51 kDaのα (GSK-3α )と47kDaのβ(GSK-3β)の二つのアイソフォームに分類される<sup>[1]</sup>。これらの2つのアイソフォームは、キナーゼドメイン内では98%と高い相同性を示すが、76個のC末アミノ酸残基では36%の相同性しかない。GSK-3βには、スプライシング変異体;GSK-3β2が存在する。GSK-3β2の量はGSK-3β全体の15%以下であり、GSK-3βのキナーゼドメイン内に13アミノ酸残基の挿入を認める。GSK-3β2は、tauタンパクに対するキナーゼ活性がGSK-3βよりも減弱しており神経細胞体に認められる<sup>[2]</sup> 。GSK-3βは、Wnt, Shhなどのシグナル伝達の制御に関与しており、代謝、胚発生における体軸形成や神経系の分化に重要な役割を果たしている<sup>[3]</sup>。  
グリコーゲン合成酵素キナーゼ3(Glycogen synthase kinase 3; GSK-3)は、プロリン指向性セリン/スレオニリン酸化酵素のひとつであり、最初にグリコーゲン合成酵素をリン酸化して不活化する酵素として見出された。哺乳類では、GSK-3は51 kDaのα (GSK-3α)と47kDaのβ(GSK-3β)の二つのアイソフォームに分類される<sup>[1]</sup>。これらの2つのアイソフォームは、キナーゼドメイン内では98%と高い相同性を示すが、76個のC末アミノ酸残基では36%の相同性しかない。GSK-3βには、スプライシング変異体;GSK-3β2が存在する。GSK-3β2の量はGSK-3β全体の15%以下であり、GSK-3βのキナーゼドメイン内に13アミノ酸残基の挿入を認める。GSK-3β2は、tauタンパクに対するキナーゼ活性がGSK-3βよりも減弱しており神経細胞体に認められる<sup>[2]</sup>。GSK-3βは、Wnt, Shhなどのシグナル伝達の制御に関与しており、胚発生における体軸形成や神経系の分化に重要な役割を果たしている<sup>[3]</sup>。  


== 構造、機能  ==
== 構造、機能  ==


GSK-3βは、細胞が静止状態にあるときには活性型である。その細胞がインスリンなどの物質で処理をされると、GSK-3βはホォスファチジルイノシトール‐3キナーゼ(PI-3K)の関与で不活化される。つまり、インスリンなどで処理された細胞の内部ではPI-3K - Akt経路が活性化し、その結果GSK-3βのセリン9のリン酸化が起こり不活性型となる<sup>[4]</sup>。  
GSK-3βは、細胞が静止状態にあるときには活性型である。細胞がインスリンなどの物質で処理をされると、GSK-3βはホォスファチジルイノシトール‐3キナーゼ(PI-3K)の関与で不活化される。つまり、インスリンなどで処理された細胞の内部ではPI-3K-Akt経路が活性化し、その結果GSK-3βのセリン9のリン酸化が起こり不活性型となる<sup>[4]</sup>。  


GSK-3betaの基質は、本来のリン酸化部位のC末に位置する"priming"残基が先にリン酸化(priming phosphorylation)を受けている方が効率よくリン酸化できる。GSK-3βのactivation loop (T-loop)に位置するスレオニン216のリン酸化により基質結合部位が開き、アルギニン96, アルギニン180, リシン205からなるpositively charged pocketにリン酸化された基質の"priming"残基が結合する。この結合によってキナーゼドメインの方向が最適化され、基質がGSK-3βのcatalytic&nbsp;grooveの適切な位置にはまりリン酸化をうける<sup>[4]</sup>。&nbsp;     
GSK-3βの基質は、本来のリン酸化部位のC末に位置する"priming"残基が先にリン酸化(priming phosphorylation)を受けている方が効率よくリン酸化できる。GSK-3βのactivation loop (T-loop)に位置するスレオニン216のリン酸化により基質結合部位が開き、アルギニン96, アルギニン180, リシン205からなるpositively charged pocketにリン酸化された基質の"priming"残基が結合する。この結合によってキナーゼドメインの方向が最適化され、基質がGSK-3βのcatalytic&nbsp;grooveの適切な位置にはまりリン酸化をうける<sup>[4]</sup>。&nbsp;     


== シグナル伝達に関する経路  ==
== シグナル伝達に関する経路  ==
13行目: 13行目:
=== Wntシグナル経路  ===
=== Wntシグナル経路  ===


Wntの非存在下では、GSK-3βはβ-catenin, Axinやがん抑制遺伝子産物APC, casein kinase 1αと複合体を形成しており、この複合体内でcasein kinase 1αとともに効率よくβ-cateninをリン酸化する。リン酸化されたβ-cateninはユビキチン化を受け、プロテオソーム内で分解される。Wntが7回膜貫通型受容体のFrizzled(Fz)と1回膜貫通型受容体のLRP5/6に結合すると、そのシグナルが細胞内に伝達されDishevelledがGSK-3β依存性のβ-catenin,のリン酸化を抑制する。低リン酸化状態のβ-cateninはプロテオゾーム内での分解を免れ、細胞質内に蓄積し核へ移行しWnt - β-catenin経路下流の遺伝子発現を調節する<sup>[5] </sup>。  
Wntの非存在下では、GSK-3βはβ-catenin, Axinやがん抑制遺伝子産物APC, casein kinase 1αと複合体を形成しており、この複合体内でcasein kinase 1αとともに効率よくβ-cateninをリン酸化する。リン酸化されたβ-cateninはユビキチン化を受け、プロテオソーム内で分解される。Wntが7回膜貫通型受容体のFrizzled(Fz)と1回膜貫通型受容体のLRP5/6に結合すると、そのシグナルが細胞内に伝達されDishevelledがGSK-3β依存性のβ-cateninのリン酸化を抑制する。低リン酸化状態のβ-cateninはプロテオゾーム内での分解を免れ、細胞質内に蓄積して核へ移行しWnt-β-catenin経路下流の遺伝子発現を調節する<sup>[5]</sup>。  


=== Shhシグナル経路  ===
=== Shhシグナル経路  ===


GSK-3βはヘッジホッグシグナルでも重要な役割を果たしている。ヘッジホッグシグナルはショウジョウバエから哺乳類にいたる様々な生物に見られるシグナル経路である<sup>[6] </sup>。  
GSK-3βはヘッジホッグシグナルでも重要な役割を果たしている。ヘッジホッグシグナルはショウジョウバエから哺乳類にいたる様々な生物に見られるシグナル経路である<sup>[6]</sup>。  


ヘッジホッグシグナルは、シグナル受容体であるPatched (Ptc) とシグナルトランスデューサーであるSmoothened (Smo) によって調節されている。ヘッジホッグタンパクが存在しない時、PtcがSmoの活性化を抑制している。この状態では、ヘッジホッグシグナル下流分子であるCubitus interruptus (Ci) は、GSK-3β - サイクリン依存性キナーゼ阻害因子 (CKI)&nbsp; - プロテインキナーゼC (PKA) 複合体にリン酸化され、プロセスシングをうけ抑制型になる。ヘッジホッグタンパクがPtcと結合すると、GSK-3βを含む複合体からCiが解離しリン酸化を受けていない活性型の状態で核に移行、ヘッジホッグシグナル下流分子の転写活性を上昇させる<sup>[7, 8]</sup>。  
ヘッジホッグシグナルは、シグナル受容体であるPatched (Ptc) とシグナルトランスデューサーであるSmoothened (Smo) によって調節されている。ヘッジホッグタンパクが存在しない時、PtcがSmoの活性化を抑制している。この状態では、ヘッジホッグシグナル下流分子であるCubitus interruptus (Ci) は、GSK-3β - サイクリン依存性キナーゼ阻害因子 (CKI)&nbsp; - プロテインキナーゼC (PKA) 複合体にリン酸化され、プロセスシングをうけ抑制型になる。ヘッジホッグタンパクがPtcと結合すると、GSK-3βを含む複合体からCiが解離しリン酸化を受けていない活性型の状態で核に移行、ヘッジホッグシグナル下流分子の転写活性を上昇させる<sup>[7, 8]</sup>。  
71

回編集