「ミクログリア」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
15行目: 15行目:


==歴史==
==歴史==
 ミクログリアは1920年代にPio del Rio-Hortegaによって中枢神経系における「第3のエレメント」として位置付けられ、「ミクログリア」と命名された。彼の一連の研究から、ミクログリアの発達初期に脳への浸潤し、その細胞はアメボイド形態で中胚葉由来であろうということ、成体脳では枝分かれした形態で一定間隔を保って分布し、病態ではアメボイド形態になり、移動、増殖、貪食能を有するという仮説が立てられた<ref name=ref1><pubmed>21527731</pubmed></ref>。これらは、現在までの多くの研究から明らかになったミクログリアの特徴や機能にマッチしており、非常に先駆的な研究といえる(彼はFather of Microgliaとも呼ばれている)。その後、中枢神経系においてミクログリアを他の細胞と識別できる[[F4]]/80、Fc受容体、補体受容体<ref name=ref2><pubmed>3895031</pubmed></ref>、Iba1<ref name=ref3><pubmed>8713135</pubmed></ref> <ref name=ref4><pubmed>9630473</pubmed></ref>に対する抗体や細胞培養法の開発により、ミクログリア研究が大きく発展した。さらに、1960年代後半にKreutzbergが、[[血液脳関門]]が正常なままである[[顔面神経]]切断モデルを開発し、神経損傷によるミクログリアの応答性の研究に飛躍的な発展をもたらした<ref name=ref1 />。その後、ミクログリアに蛍光タンパク質を発現する[[トランスジェニックマウス]]が開発され、[[免疫]]組織染色をすることなくミクログリアの可視化が実現し、生体イメージング技術との組み合わせで、ミクログリアのin vivoイメージングが可能になった(後述)。これにより、これまで正常時のミクログリアは「静止型(resting)」とされてきたが、ミクログリアは細胞突起をダイナミックに動かし、[[シナプス]]との物理的コンタクトや細胞障害に鋭敏に応答することが明らかになった。さらに、遺伝子改変による細胞ラベリング技術等により、長らく議論になっていたミクログリアの起源が骨髄由来細胞ではなく[[胎生期]]に卵黄嚢で発生する前駆細胞であることが発見され、更なるブレイクスルーとなった(後述)。また、生体からミクログリアのみをFACS等で分取し、マイクロアレイや次世代シーケンス技術等による網羅的遺伝子解析からミクログリアに高発現する遺伝子群(P2ry12、P2ry13、Tmem119、Gpr34、Siglech、Trem2、Cx3cr1など)も明らかになり、骨髄由来の単球やマクロファージとは異なる遺伝子発現パターンを有していることが報告された<ref name=ref5><pubmed>23023392</pubmed></ref> <ref name=ref6><pubmed>24316888</pubmed></ref> <ref name=ref7><pubmed>25480297</pubmed></ref>。最近では脳部位によってもミクログリアの遺伝子発現が異なることも報告されている<ref name=ref8><pubmed>26780511</pubmed></ref>。加えて、ミクログリア選択的な遺伝子改変技術も開発され、ミクログリアの生理および病態における多くの興味深い役割が次々と明らかになってきており<ref name=ref1 /> <ref name=ref9><pubmed>21068834</pubmed></ref> <ref name=ref10><pubmed>    22660301</pubmed></ref> <ref name=ref11><pubmed>23307732</pubmed></ref> <ref name=ref12><pubmed></pubmed></ref> <ref name=ref13><pubmed></pubmed></ref> <ref name=ref14><pubmed></pubmed></ref>、中枢神経系機能の維持や異常にこの「第3のエレメント」が世界的な注目を集めている。
 ミクログリアは1920年代にPio del Rio-Hortegaによって中枢神経系における「第3のエレメント」として位置付けられ、「ミクログリア」と命名された。彼の一連の研究から、ミクログリアの発達初期に脳への浸潤し、その細胞はアメボイド形態で中胚葉由来であろうということ、成体脳では枝分かれした形態で一定間隔を保って分布し、病態ではアメボイド形態になり、移動、増殖、貪食能を有するという仮説が立てられた<ref name=ref1><pubmed>21527731</pubmed></ref>。これらは、現在までの多くの研究から明らかになったミクログリアの特徴や機能にマッチしており、非常に先駆的な研究といえる(彼はFather of Microgliaとも呼ばれている)。その後、中枢神経系においてミクログリアを他の細胞と識別できる[[F4]]/80、Fc受容体、補体受容体<ref name=ref2><pubmed>3895031</pubmed></ref>、Iba1<ref name=ref3><pubmed>8713135</pubmed></ref> <ref name=ref4><pubmed>9630473</pubmed></ref>に対する抗体や細胞培養法の開発により、ミクログリア研究が大きく発展した。さらに、1960年代後半にKreutzbergが、[[血液脳関門]]が正常なままである[[顔面神経]]切断モデルを開発し、神経損傷によるミクログリアの応答性の研究に飛躍的な発展をもたらした<ref name=ref1 />。その後、ミクログリアに蛍光タンパク質を発現する[[トランスジェニックマウス]]が開発され、[[免疫]]組織染色をすることなくミクログリアの可視化が実現し、生体イメージング技術との組み合わせで、ミクログリアのin vivoイメージングが可能になった(後述)。これにより、これまで正常時のミクログリアは「静止型(resting)」とされてきたが、ミクログリアは細胞突起をダイナミックに動かし、[[シナプス]]との物理的コンタクトや細胞障害に鋭敏に応答することが明らかになった。さらに、遺伝子改変による細胞ラベリング技術等により、長らく議論になっていたミクログリアの起源が骨髄由来細胞ではなく[[胎生期]]に卵黄嚢で発生する前駆細胞であることが発見され、更なるブレイクスルーとなった(後述)。また、生体からミクログリアのみをFACS等で分取し、マイクロアレイや次世代シーケンス技術等による網羅的遺伝子解析からミクログリアに高発現する遺伝子群(P2ry12、P2ry13、Tmem119、Gpr34、Siglech、Trem2、Cx3cr1など)も明らかになり、骨髄由来の単球やマクロファージとは異なる遺伝子発現パターンを有していることが報告された<ref name=ref5><pubmed>23023392</pubmed></ref> <ref name=ref6><pubmed>24316888</pubmed></ref> <ref name=ref7><pubmed>25480297</pubmed></ref>。最近では脳部位によってもミクログリアの遺伝子発現が異なることも報告されている<ref name=ref8><pubmed>26780511</pubmed></ref>。加えて、ミクログリア選択的な遺伝子改変技術も開発され、ミクログリアの生理および病態における多くの興味深い役割が次々と明らかになってきており<ref name=ref1 /> <ref name=ref9><pubmed>21068834</pubmed></ref> <ref name=ref10><pubmed>    22660301</pubmed></ref> <ref name=ref11><pubmed>23307732</pubmed></ref> <ref name=ref12><pubmed>24713688</pubmed></ref> <ref name=ref13><pubmed>26634996</pubmed></ref> <ref name=ref14><pubmed>24995975</pubmed></ref>、中枢神経系機能の維持や異常にこの「第3のエレメント」が世界的な注目を集めている。


==発生==
==発生==
 ミクログリアの発生や起源については古くから議論されてきた。以前は神経外胚葉由来という説もあったが、現在では中胚葉由来とされている。マクロファージマーカーでミクログリアを標識した組織学的研究から、脳でのミクログリアは胎生期の骨髄造血前に観察される<ref name=ref15><pubmed></pubmed></ref>。ミクログリアの起源となる前駆細胞とその発生組織は最近まで未解明であったが、2010年にGinhouxらがfate-mapping解析によって、胎生7.5日の卵黄嚢に存在する前駆細胞が循環器系(胎生8.5~10日に形成)を介して脳へ移動しミクログリアに[[分化]]することを発見し<ref name=ref16><pubmed></pubmed></ref>、それがミクログリアの起源であろうとされている。脳へ移動した卵黄嚢由来前駆細胞は増殖能を有する。この説は、骨髄系細胞の発生に必要な[[転写因子]]Mybの欠損[[マウス]]でミクログリアが正常に発生することからも裏付けられた<ref name=ref17><pubmed></pubmed></ref>。卵黄嚢前駆細胞(おそらく赤血球系骨髄前駆細胞)からミクログリアへの分化には転写因子RUNX1、PU.1、IRF8が重要な役割を担っている<ref name=ref16 /> <ref name=ref18><pubmed></pubmed></ref>。
 ミクログリアの発生や起源については古くから議論されてきた。以前は神経外胚葉由来という説もあったが、現在では中胚葉由来とされている。マクロファージマーカーでミクログリアを標識した組織学的研究から、脳でのミクログリアは胎生期の骨髄造血前に観察される<ref name=ref15><pubmed>23616747</pubmed></ref>。ミクログリアの起源となる前駆細胞とその発生組織は最近まで未解明であったが、2010年にGinhouxらがfate-mapping解析によって、胎生7.5日の卵黄嚢に存在する前駆細胞が循環器系(胎生8.5~10日に形成)を介して脳へ移動しミクログリアに[[分化]]することを発見し<ref name=ref16><pubmed>20966214</pubmed></ref>、それがミクログリアの起源であろうとされている。脳へ移動した卵黄嚢由来前駆細胞は増殖能を有する。この説は、骨髄系細胞の発生に必要な[[転写因子]]Mybの欠損[[マウス]]でミクログリアが正常に発生することからも裏付けられた<ref name=ref17><pubmed>22442384</pubmed></ref>。卵黄嚢前駆細胞(おそらく赤血球系骨髄前駆細胞)からミクログリアへの分化には転写因子RUNX1、PU.1、IRF8が重要な役割を担っている<ref name=ref16 /> <ref name=ref18><pubmed>23334579</pubmed></ref>。


 成体におけるミクログリアについては、蛍光タンパク質[[GFP]]を発現したマウスの骨髄細胞を移植した骨髄キメラマウスの脳でGFP陽性のミクログリアが観察されたことから、骨髄由来の単球やマクロファージがミクログリアの供給源である可能性が考えられた。しかし、骨髄キメラマウスを作製するために用いる致死量放射線照射や骨髄細胞投与という実験的操作の影響が懸念されていた<ref name=ref19><pubmed></pubmed></ref>。実際に、脳の遮蔽保護や放射線照射を利用しないキメラマウスでの実験では、GFP陽性のミクログリアがほとんど認められなかった<ref name=ref20><pubmed></pubmed></ref> <ref name=ref21><pubmed></pubmed></ref>。
 成体におけるミクログリアについては、蛍光タンパク質[[GFP]]を発現したマウスの骨髄細胞を移植した骨髄キメラマウスの脳でGFP陽性のミクログリアが観察されたことから、骨髄由来の単球やマクロファージがミクログリアの供給源である可能性が考えられた。しかし、骨髄キメラマウスを作製するために用いる致死量放射線照射や骨髄細胞投与という実験的操作の影響が懸念されていた<ref name=ref19><pubmed>26432480</pubmed></ref>。実際に、脳の遮蔽保護や放射線照射を利用しないキメラマウスでの実験では、GFP陽性のミクログリアがほとんど認められなかった<ref name=ref20><pubmed>18026097</pubmed></ref> <ref name=ref21><pubmed>23526995</pubmed></ref>。


 コロニー刺激因子1受容体(CSF1R)はミクログリアに発現しており、その欠損マウスではミクログリアの細胞数が消失する<ref name=ref22><pubmed></pubmed></ref>。また、CSF1R阻害薬を成体マウスに慢性的に処置することでもミクログリア数が著減する<ref name=ref23><pubmed></pubmed></ref>。一方で、CSF1Rの内因性リガンドであるCSF1の欠損ではそのような劇的な減少は認められない。最近、CSF1Rの他の内因性リガンドとして同定されたインターロイキン-34(IL-34)は、生後マウス脳のニューロンに発現し、その欠損により卵黄嚢での前駆細胞は正常であるが、生後のミクロ[[グリア細胞]]数が減少することから、成体でのミクログリアの維持に重要であると考えられている<ref name=ref24><pubmed></pubmed></ref> <ref name=ref25><pubmed></pubmed></ref>。さらに興味深いことは、IL-34欠損マウスでのミクログリア数の減少は脳部位によって差異があり、各脳部位によってミクログリアの維持メカニズムが異なる可能性も示唆されている。また、TGF-βも成体でのミクログリアの機能維持に関与している<ref name=ref6 />。
 コロニー刺激因子1受容体(CSF1R)はミクログリアに発現しており、その欠損マウスではミクログリアの細胞数が消失する<ref name=ref22><pubmed>22046273</pubmed></ref>。また、CSF1R阻害薬を成体マウスに慢性的に処置することでもミクログリア数が著減する<ref name=ref23><pubmed>24742461</pubmed></ref>。一方で、CSF1Rの内因性リガンドであるCSF1の欠損ではそのような劇的な減少は認められない。最近、CSF1Rの他の内因性リガンドとして同定されたインターロイキン-34(IL-34)は、生後マウス脳のニューロンに発現し、その欠損により卵黄嚢での前駆細胞は正常であるが、生後のミクロ[[グリア細胞]]数が減少することから、成体でのミクログリアの維持に重要であると考えられている<ref name=ref24><pubmed>23177320</pubmed></ref> <ref name=ref25><pubmed>22729249</pubmed></ref>。さらに興味深いことは、IL-34欠損マウスでのミクログリア数の減少は脳部位によって差異があり、各脳部位によってミクログリアの維持メカニズムが異なる可能性も示唆されている。また、TGF-βも成体でのミクログリアの機能維持に関与している<ref name=ref6 />。


==形態・分布==
==形態・分布==
 通常は小さな細胞体に複数の細かく枝分かれした突起をもつ細胞形態で存在しているが、細胞外からの刺激が加わると突起の短縮や細胞体の肥大化などの顕著な形態学的変化を伴い、活性化状態へと移行する。正常状態のミクログリアはラミファイド型、活性化しアメーバ様の形態をしたミクログリアはアメボイド型と呼ばれる。神経細胞の損傷や脳組織内への感染性[[細菌]]の侵入に応答して活性化型へと移行したミクログリアは貪食作用を示して病原菌や細胞の残骸を取り除く。活性化しアメーバ運動をしているミクログリアの姿は末梢の免疫細胞であるマクロファージと非常に良く似た形態をとる。
 通常は小さな細胞体に複数の細かく枝分かれした突起をもつ細胞形態で存在しているが、細胞外からの刺激が加わると突起の短縮や細胞体の肥大化などの顕著な形態学的変化を伴い、活性化状態へと移行する。正常状態のミクログリアはラミファイド型、活性化しアメーバ様の形態をしたミクログリアはアメボイド型と呼ばれる。神経細胞の損傷や脳組織内への感染性[[細菌]]の侵入に応答して活性化型へと移行したミクログリアは貪食作用を示して病原菌や細胞の残骸を取り除く。活性化しアメーバ運動をしているミクログリアの姿は末梢の免疫細胞であるマクロファージと非常に良く似た形態をとる。


 ミクログリアは細胞個々のテリトリーがあり、同一の脳部位においてはほぼ均一に分布している。しかし、その分布密度は脳部位によって異なっており、例えば成体マウスでは、皮質や脳梁におけるミクログリアの占める割合は細胞の5%ほどであるが、黒質におけるミクログリアの占める割合は細胞の12%にのぼる。また、部位によって細胞体や突起構造の形にも違いがあり、[[灰白質]]と[[白質]]のミクログリアを比べると、灰白質のミクログリアは放射状に突起構造を伸ばしているが、白質のミクログリアは長細く突起を伸ばし、細胞体も細長い形態をとることが報告されている<ref name=ref26><pubmed></pubmed></ref>。また、興味深いことに、ミクログリア突起長は昼間よりも夜間で長く、さらに突起の分岐数も夜間のほうが多く、より複雑な構造をとっている。この日内変化はミクログリア分子時計で制御されており、[[プリン受容体]]の一つである[[P2Y12受容体]]の発現が日内変動しているためと考えられている。さらに、シナプスの密度と活動性も日内変化の原因の一つとしてミクログリアの突起構造日内変化が関与していることも示されている<ref name=ref27><pubmed></pubmed></ref>。
 ミクログリアは細胞個々のテリトリーがあり、同一の脳部位においてはほぼ均一に分布している。しかし、その分布密度は脳部位によって異なっており、例えば成体マウスでは、皮質や脳梁におけるミクログリアの占める割合は細胞の5%ほどであるが、黒質におけるミクログリアの占める割合は細胞の12%にのぼる。また、部位によって細胞体や突起構造の形にも違いがあり、[[灰白質]]と[[白質]]のミクログリアを比べると、灰白質のミクログリアは放射状に突起構造を伸ばしているが、白質のミクログリアは長細く突起を伸ばし、細胞体も細長い形態をとることが報告されている<ref name=ref26><pubmed>2089275</pubmed></ref>。また、興味深いことに、ミクログリア突起長は昼間よりも夜間で長く、さらに突起の分岐数も夜間のほうが多く、より複雑な構造をとっている。この日内変化はミクログリア分子時計で制御されており、[[プリン受容体]]の一つである[[P2Y12受容体]]の発現が日内変動しているためと考えられている。さらに、シナプスの密度と活動性も日内変化の原因の一つとしてミクログリアの突起構造日内変化が関与していることも示されている<ref name=ref27><pubmed>24067868</pubmed></ref>。


==突起伸長・細胞遊走==
==突起伸長・細胞遊走==
 2005年にNimmerjahnらとGanらの研究グループは2光子顕微鏡を用いたin vivoイメージングにより、生きたままのマウスの脳内ミクログリアを非侵襲的に観察することに成功し、従来静止状態とされてきたラミファイドミクログリアが常に突起を動かし伸縮を繰り返して活発に活動していることを発見した<ref name=ref28><pubmed></pubmed></ref> <ref name=ref29><pubmed></pubmed></ref>。固定組織標本からは認識されなかったこの発見はミクログリア研究のブレイクスルーとなり、ミクログリアの挙動とその生理的な役割に注目を集めることとなった。
 2005年にNimmerjahnらとGanらの研究グループは2光子顕微鏡を用いたin vivoイメージングにより、生きたままのマウスの脳内ミクログリアを非侵襲的に観察することに成功し、従来静止状態とされてきたラミファイドミクログリアが常に突起を動かし伸縮を繰り返して活発に活動していることを発見した<ref name=ref28><pubmed>15831717</pubmed></ref> <ref name=ref29><pubmed>15895084</pubmed></ref>。固定組織標本からは認識されなかったこの発見はミクログリア研究のブレイクスルーとなり、ミクログリアの挙動とその生理的な役割に注目を集めることとなった。


 ミクログリアの突起伸長や細胞遊走は化学誘引物質の濃度勾配に従う走化性によって起こる。ミクログリアの代表的走化性誘導因子としては[[ATP]]およびADPが知られており、[[初代培養]]ミクログリア細胞を用いた研究からP2Y12受容体を介したシグナルが重要な役割を担っていることが明らかにされている<ref name=ref30><pubmed></pubmed></ref> <ref name=ref31><pubmed></pubmed></ref>。加えて、[[P2X4受容体]]や[[アデノシン受容体]]A1や[[A3受容体]]も細胞遊走に関与する<ref name=ref32><pubmed></pubmed></ref> <ref name=ref33><pubmed></pubmed></ref>。その一方で、ミクログリアの突起の退縮には[[A2A受容体]]が関与することも報告されている<ref name=ref34><pubmed></pubmed></ref>。ATPやADP以外にも[[Aβ]]やブラジキニン、[[グルタミン酸]]、補体C5a、CCL21、NGF、[[EGF]]といった多岐にわたる因子がミクログリア走化性誘導因子として報告されている<ref name=ref1 /> <ref name=ref35><pubmed></pubmed></ref> <ref name=ref36><pubmed></pubmed></ref> <ref name=ref37><pubmed></pubmed></ref>。
 ミクログリアの突起伸長や細胞遊走は化学誘引物質の濃度勾配に従う走化性によって起こる。ミクログリアの代表的走化性誘導因子としては[[ATP]]およびADPが知られており、[[初代培養]]ミクログリア細胞を用いた研究からP2Y12受容体を介したシグナルが重要な役割を担っていることが明らかにされている<ref name=ref30><pubmed>11245682</pubmed></ref> <ref name=ref31><pubmed></pubmed></ref>。加えて、[[P2X4受容体]]や[[アデノシン受容体]]A1や[[A3受容体]]も細胞遊走に関与する<ref name=ref32><pubmed></pubmed></ref> <ref name=ref33><pubmed></pubmed></ref>。その一方で、ミクログリアの突起の退縮には[[A2A受容体]]が関与することも報告されている<ref name=ref34><pubmed></pubmed></ref>。ATPやADP以外にも[[Aβ]]やブラジキニン、[[グルタミン酸]]、補体C5a、CCL21、NGF、[[EGF]]といった多岐にわたる因子がミクログリア走化性誘導因子として報告されている<ref name=ref1 /> <ref name=ref35><pubmed></pubmed></ref> <ref name=ref36><pubmed></pubmed></ref> <ref name=ref37><pubmed></pubmed></ref>。


==機能==
==機能==