「ミクログリア」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
32行目: 32行目:
 2005年にNimmerjahnらとGanらの研究グループは2光子顕微鏡を用いたin vivoイメージングにより、生きたままのマウスの脳内ミクログリアを非侵襲的に観察することに成功し、従来静止状態とされてきたラミファイドミクログリアが常に突起を動かし伸縮を繰り返して活発に活動していることを発見した<ref name=ref28><pubmed>15831717</pubmed></ref> <ref name=ref29><pubmed>15895084</pubmed></ref>。固定組織標本からは認識されなかったこの発見はミクログリア研究のブレイクスルーとなり、ミクログリアの挙動とその生理的な役割に注目を集めることとなった。
 2005年にNimmerjahnらとGanらの研究グループは2光子顕微鏡を用いたin vivoイメージングにより、生きたままのマウスの脳内ミクログリアを非侵襲的に観察することに成功し、従来静止状態とされてきたラミファイドミクログリアが常に突起を動かし伸縮を繰り返して活発に活動していることを発見した<ref name=ref28><pubmed>15831717</pubmed></ref> <ref name=ref29><pubmed>15895084</pubmed></ref>。固定組織標本からは認識されなかったこの発見はミクログリア研究のブレイクスルーとなり、ミクログリアの挙動とその生理的な役割に注目を集めることとなった。


 ミクログリアの突起伸長や細胞遊走は化学誘引物質の濃度勾配に従う走化性によって起こる。ミクログリアの代表的走化性誘導因子としては[[ATP]]およびADPが知られており、[[初代培養]]ミクログリア細胞を用いた研究からP2Y12受容体を介したシグナルが重要な役割を担っていることが明らかにされている<ref name=ref30><pubmed>11245682</pubmed></ref> <ref name=ref31><pubmed></pubmed></ref>。加えて、[[P2X4受容体]]や[[アデノシン受容体]]A1や[[A3受容体]]も細胞遊走に関与する<ref name=ref32><pubmed></pubmed></ref> <ref name=ref33><pubmed></pubmed></ref>。その一方で、ミクログリアの突起の退縮には[[A2A受容体]]が関与することも報告されている<ref name=ref34><pubmed></pubmed></ref>。ATPやADP以外にも[[Aβ]]やブラジキニン、[[グルタミン酸]]、補体C5a、CCL21、NGF、[[EGF]]といった多岐にわたる因子がミクログリア走化性誘導因子として報告されている<ref name=ref1 /> <ref name=ref35><pubmed></pubmed></ref> <ref name=ref36><pubmed></pubmed></ref> <ref name=ref37><pubmed></pubmed></ref>。
 ミクログリアの突起伸長や細胞遊走は化学誘引物質の濃度勾配に従う走化性によって起こる。ミクログリアの代表的走化性誘導因子としては[[ATP]]およびADPが知られており、[[初代培養]]ミクログリア細胞を用いた研究からP2Y12受容体を介したシグナルが重要な役割を担っていることが明らかにされている<ref name=ref30><pubmed>11245682</pubmed></ref> <ref name=ref31><pubmed>14603465</pubmed></ref>。加えて、[[P2X4受容体]]や[[アデノシン受容体]]A1や[[A3受容体]]も細胞遊走に関与する<ref name=ref32><pubmed>17299767</pubmed></ref> <ref name=ref33><pubmed>22335470</pubmed></ref>。その一方で、ミクログリアの突起の退縮には[[A2A受容体]]が関与することも報告されている<ref name=ref34><pubmed>19525944</pubmed></ref>。ATPやADP以外にも[[Aβ]]やブラジキニン、[[グルタミン酸]]、補体C5a、CCL21、NGF、[[EGF]]といった多岐にわたる因子がミクログリア走化性誘導因子として報告されている<ref name=ref1 /> <ref name=ref35><pubmed>11316806</pubmed></ref> <ref name=ref36><pubmed>7563239</pubmed></ref> <ref name=ref37><pubmed>9283823</pubmed></ref>。


==機能==
==機能==
===液性因子産生放出===
===液性因子産生放出===
 ミクログリアは中枢神経系の機能に様々な影響を及ぼすが、この生理機能への調節機構の手段の一つとして液性因子の産生や放出が挙げられる。神経障害時や[[ストレス]]、細胞内感染などによって活性化したミクログリアからは腫瘍壊死因子(TNF-α)、IL-1β、IL-6などの炎症性サイトカインが放出され、神経変性や中枢神経系の炎症応答を引き起こす<ref name=ref38><pubmed></pubmed></ref>。それ故、ミクログリア由来の炎症性サイトカインにより中枢神経系の機能に何らかの支障が生じることで、[[多発性硬化症]]や[[アルツハイマー病]]などの中枢神経系疾患の悪化につながることが示唆されている。ミクログリアから放出されるケモカインもまた炎症応答や神経変性を引き起こすなど、生理学的および病的状態に大きく寄与する<ref name=ref39><pubmed></pubmed></ref>。培養ミクログリア細胞からはCCL3(MIP-1α)やCXCL2(MIP-2)がプリン受容体である[[P2X7受容体]]の刺激を介して産生および放出される<ref name=ref40><pubmed></pubmed></ref> <ref name=ref41><pubmed></pubmed></ref>。そして神経が障害される状況においては脊髄ミクログリアでCCL3の発現が増加し、持続した[[疼痛]]が起こる<ref name=ref42><pubmed></pubmed></ref>。炎症性サイトカインやケモカイン以外にも、[[一酸化窒素]]([[NO]])、活性酸素(ROS)、グルタミン酸、ATPなどがミクログリアから放出され、[[神経細胞死]]を誘導することが示唆されている<ref name=ref43><pubmed></pubmed></ref> <ref name=ref44><pubmed></pubmed></ref> <ref name=ref45><pubmed></pubmed></ref>。
 ミクログリアは中枢神経系の機能に様々な影響を及ぼすが、この生理機能への調節機構の手段の一つとして液性因子の産生や放出が挙げられる。神経障害時や[[ストレス]]、細胞内感染などによって活性化したミクログリアからは腫瘍壊死因子(TNF-α)、IL-1β、IL-6などの炎症性サイトカインが放出され、神経変性や中枢神経系の炎症応答を引き起こす<ref name=ref38><pubmed>16169595</pubmed></ref>。それ故、ミクログリア由来の炎症性サイトカインにより中枢神経系の機能に何らかの支障が生じることで、[[多発性硬化症]]や[[アルツハイマー病]]などの中枢神経系疾患の悪化につながることが示唆されている。ミクログリアから放出されるケモカインもまた炎症応答や神経変性を引き起こすなど、生理学的および病的状態に大きく寄与する<ref name=ref39><pubmed>15139300</pubmed></ref>。培養ミクログリア細胞からはCCL3(MIP-1α)やCXCL2(MIP-2)がプリン受容体である[[P2X7受容体]]の刺激を介して産生および放出される<ref name=ref40><pubmed>19014371</pubmed></ref> <ref name=ref41><pubmed>20477948</pubmed></ref>。そして神経が障害される状況においては脊髄ミクログリアでCCL3の発現が増加し、持続した[[疼痛]]が起こる<ref name=ref42><pubmed>   24589480</pubmed></ref>。炎症性サイトカインやケモカイン以外にも、[[一酸化窒素]]([[NO]])、活性酸素(ROS)、グルタミン酸、ATPなどがミクログリアから放出され、[[神経細胞死]]を誘導することが示唆されている<ref name=ref43><pubmed>26041993</pubmed></ref> <ref name=ref44><pubmed>18160853</pubmed></ref> <ref name=ref45><pubmed>23259598</pubmed></ref>。


 一方、ミクログリアから産生放出される液性因子は、神経系の調節にも密接に関わる。例えば、神経系の異常時において活性化したミクログリアから放出される脳由来神経栄養因子(BDNF)は神経の興奮を引き起こす<ref name=ref46><pubmed></pubmed></ref>。一方、ミクログリア特異的にBDNFを欠損させることで脳のシナプス可塑性に異常が認められることから、ミクログリア由来のBDNFは正常時には記憶や学習に重要な役割を担うことが分かる<ref name=ref47><pubmed></pubmed></ref>。発達期や出生後早期においては、ミクログリアから[[分泌]]されるインスリン様成長因子1(IGF-1)がニューロンの生存維持に必要なこと<ref name=ref48><pubmed></pubmed></ref>、また面白いことに神経障害作用を有する炎症性サイトカインIL-1βおよびIFN-γがニューロンの発生をむしろ促進することも報告されている<ref name=ref49><pubmed></pubmed></ref>。他にも、中枢神経系ではミクログリアのみに発現する[[リソソーム]]性プロテアーゼのカテプシンSは、神経細胞に発現する膜結合型ケモカインのフラクタルカイン(CX3CL1)を切断し<ref name=ref50><pubmed></pubmed></ref>、それがミクログリアのCX3CR1に作用することで様々な生理応答を示す。さらに、ミクログリアから放出されるカテプシンSは[[大脳皮質]][[体性感覚野]]においてスパインの密度や活動の日内リズム形成に関与することが報告されている<ref name=ref27 />。
 一方、ミクログリアから産生放出される液性因子は、神経系の調節にも密接に関わる。例えば、神経系の異常時において活性化したミクログリアから放出される脳由来神経栄養因子(BDNF)は神経の興奮を引き起こす<ref name=ref46><pubmed>16355225</pubmed></ref>。一方、ミクログリア特異的にBDNFを欠損させることで脳のシナプス可塑性に異常が認められることから、ミクログリア由来のBDNFは正常時には記憶や学習に重要な役割を担うことが分かる<ref name=ref47><pubmed>24360280</pubmed></ref>。発達期や出生後早期においては、ミクログリアから[[分泌]]されるインスリン様成長因子1(IGF-1)がニューロンの生存維持に必要なこと<ref name=ref48><pubmed>23525041</pubmed></ref>、また面白いことに神経障害作用を有する炎症性サイトカインIL-1βおよびIFN-γがニューロンの発生をむしろ促進することも報告されている<ref name=ref49><pubmed>24501362</pubmed></ref>。他にも、中枢神経系ではミクログリアのみに発現する[[リソソーム]]性プロテアーゼのカテプシンSは、神経細胞に発現する膜結合型ケモカインのフラクタルカイン(CX3CL1)を切断し<ref name=ref50><pubmed>19474321</pubmed></ref>、それがミクログリアのCX3CR1に作用することで様々な生理応答を示す。さらに、ミクログリアから放出されるカテプシンSは[[大脳皮質]][[体性感覚野]]においてスパインの密度や活動の日内リズム形成に関与することが報告されている<ref name=ref27 />。


===シナプスとの相互作用===
===シナプスとの相互作用===
 正常時のミクログリアは細かく枝分かれした突起を脳実質内に張り巡らせて脳内環境の異常を待ち構えていると考えられていたが、2光子励起顕微鏡を用いたマウス大脳皮質のイメージング法の利用により、その突起の動態は非常にダイナミックなもので常に一定の領域の中で突起の退縮を繰り返していることが証明された<ref name=ref28 /> <ref name=ref29 />。この時の突起の動きは1 μm毎分で、数時間で脳全体の容積を[[検索]]できるような速度と推測される。さらに、脳内に傷害が起きた場合はP2Y12受容体を介して、さらに動的に突起を動かして障害部位に集積する<ref name=ref51><pubmed></pubmed></ref>。ミクログリアの突起がシナプス構造に接触するという直接の証拠は電子顕微鏡像で得られており<ref name=ref52><pubmed></pubmed></ref>、[[体性感覚]]野又は視覚野皮質Ⅱ/Ⅲ層のシナプスにおいては、二光子励起観察像からミクログリアの突起がシナプスに短期的な接触を繰り返していることが生きたままのマウスで確認されている<ref name=ref53><pubmed></pubmed></ref>。ミクログリアのシナプスへの接触は眼からの入力を取り除いた場合、[[テトロドトキシン]]処置や低温条件によって神経活動が抑制された条件で減少することから、神経活動依存的なものであると考えられている。
 正常時のミクログリアは細かく枝分かれした突起を脳実質内に張り巡らせて脳内環境の異常を待ち構えていると考えられていたが、2光子励起顕微鏡を用いたマウス大脳皮質のイメージング法の利用により、その突起の動態は非常にダイナミックなもので常に一定の領域の中で突起の退縮を繰り返していることが証明された<ref name=ref28 /> <ref name=ref29 />。この時の突起の動きは1 μm毎分で、数時間で脳全体の容積を[[検索]]できるような速度と推測される。さらに、脳内に傷害が起きた場合はP2Y12受容体を介して、さらに動的に突起を動かして障害部位に集積する<ref name=ref51><pubmed>17115040</pubmed></ref>。ミクログリアの突起がシナプス構造に接触するという直接の証拠は電子顕微鏡像で得られており<ref name=ref52><pubmed>21072242</pubmed></ref>、[[体性感覚]]野又は視覚野皮質Ⅱ/Ⅲ層のシナプスにおいては、二光子励起観察像からミクログリアの突起がシナプスに短期的な接触を繰り返していることが生きたままのマウスで確認されている<ref name=ref53><pubmed>19339593</pubmed></ref>。ミクログリアのシナプスへの接触は眼からの入力を取り除いた場合、[[テトロドトキシン]]処置や低温条件によって神経活動が抑制された条件で減少することから、神経活動依存的なものであると考えられている。


 ミクログリアのシナプスへの接触はシナプス剪定(synaptic pruning)といった発達段階において不必要なシナプスを取り除く機能に深く関係していると考えられており<ref name=ref54><pubmed></pubmed></ref>、シナプスリモデリングが活発な脳部位(皮質、[[海馬]]、視覚処理回路)におけるミクログリアの存在が注目されていた<ref name=ref2 /> <ref name=ref55><pubmed></pubmed></ref> <ref name=ref56><pubmed></pubmed></ref>。現在では、眼―視床経路におけるシナプスの左右眼選択的な神経回路構築時に補体シグナルを介したミクログリアによるシナプスの除去が重要なプロセスを担っていることが証明されている<ref name=ref57><pubmed></pubmed></ref>。また、障害を受けた神経細胞のシナプス間にミクログリアが入り込むことでシナプス接続を断つ(synaptic stripping)現象も古くから報告されている<ref name=ref58><pubmed></pubmed></ref>。
 ミクログリアのシナプスへの接触はシナプス剪定(synaptic pruning)といった発達段階において不必要なシナプスを取り除く機能に深く関係していると考えられており<ref name=ref54><pubmed>21778362</pubmed></ref>、シナプスリモデリングが活発な脳部位(皮質、[[海馬]]、視覚処理回路)におけるミクログリアの存在が注目されていた<ref name=ref2 /> <ref name=ref55><pubmed>1797868</pubmed></ref> <ref name=ref56><pubmed>9825958</pubmed></ref>。現在では、眼―視床経路におけるシナプスの左右眼選択的な神経回路構築時に補体シグナルを介したミクログリアによるシナプスの除去が重要なプロセスを担っていることが証明されている<ref name=ref57><pubmed>18083105</pubmed></ref>。また、障害を受けた神経細胞のシナプス間にミクログリアが入り込むことでシナプス接続を断つ(synaptic stripping)現象も古くから報告されている<ref name=ref58><pubmed>5706753</pubmed></ref>。


===貪食===
===貪食===
 ミクログリアはその挙動からマクロファージに類似した細胞と認識されている。1900年代にRobertsonによって、神経細胞由来の崩壊物がミクログリアの細胞内に多数存在していることが見出されており、ミクログリアの貪食についての初めての観察とされている。ミクログリアは活性化型の形態の一つとして、通常は細く枝分かれした突起の退縮を引き起こし、アメボイド形態に変化する。このようなミクログリアは強い貪食作用を示し、死細胞やデブリ(障害を受けた細胞の破片など)を取り除く作用を持っている。ミクログリアが障害を受けた死細胞を取り除くことは、有害な細胞内因子の漏出を防いで脳内環境を保つ意味で重要なプロセスである。現在では、神経細胞の自己死の一つの形態に、ミクログリアが生きた神経細胞を貪食して組織中から取り除くといった現象も報告されている(phagoptosis)<ref name=ref59><pubmed></pubmed></ref> <ref name=ref60><pubmed></pubmed></ref>。これらミクログリアの貪食活性は死細胞に対してだけではなく、病原体や細胞からの分泌物や老廃物の除去という役割も持っており、ミクログリアの最も重要な機能の一つである。また、不要物の除去はその後の脳組織の回復にも寄与すると考えられ、障害によって変性した[[軸索]]の再生の促進にも関与するとされる。
 ミクログリアはその挙動からマクロファージに類似した細胞と認識されている。1900年代にRobertsonによって、神経細胞由来の崩壊物がミクログリアの細胞内に多数存在していることが見出されており、ミクログリアの貪食についての初めての観察とされている。ミクログリアは活性化型の形態の一つとして、通常は細く枝分かれした突起の退縮を引き起こし、アメボイド形態に変化する。このようなミクログリアは強い貪食作用を示し、死細胞やデブリ(障害を受けた細胞の破片など)を取り除く作用を持っている。ミクログリアが障害を受けた死細胞を取り除くことは、有害な細胞内因子の漏出を防いで脳内環境を保つ意味で重要なプロセスである。現在では、神経細胞の自己死の一つの形態に、ミクログリアが生きた神経細胞を貪食して組織中から取り除くといった現象も報告されている(phagoptosis)<ref name=ref59><pubmed>21402900</pubmed></ref> <ref name=ref60><pubmed>24646669</pubmed></ref>。これらミクログリアの貪食活性は死細胞に対してだけではなく、病原体や細胞からの分泌物や老廃物の除去という役割も持っており、ミクログリアの最も重要な機能の一つである。また、不要物の除去はその後の脳組織の回復にも寄与すると考えられ、障害によって変性した[[軸索]]の再生の促進にも関与するとされる。


 ミクログリアの貪食に関わる受容体としてはToll様受容体(TLR)など外因性病原体を認識する受容体と、TREM2などの[[アポトーシス]]を認識する受容体が主なものであるが、Fc受容体や補体受容体、スカベンジャー受容体、MAC-2、マンノース受容体、LRP受容体、[[P2Y6受容体]]などもミクログリアの貪食機能との関わりが示唆されている<ref name=ref61><pubmed></pubmed></ref> <ref name=ref62><pubmed></pubmed></ref> <ref name=ref63><pubmed></pubmed></ref>。
 ミクログリアの貪食に関わる受容体としてはToll様受容体(TLR)など外因性病原体を認識する受容体と、TREM2などの[[アポトーシス]]を認識する受容体が主なものであるが、Fc受容体や補体受容体、スカベンジャー受容体、MAC-2、マンノース受容体、LRP受容体、[[P2Y6受容体]]などもミクログリアの貪食機能との関わりが示唆されている<ref name=ref61><pubmed>21546088</pubmed></ref> <ref name=ref62><pubmed>9972873</pubmed></ref> <ref name=ref63><pubmed>   19306358</pubmed></ref>。


==中枢神経疾患における役割==
==中枢神経疾患における役割==
===疼痛===
===疼痛===
 神経系のダメージや機能不全により神経障害性疼痛と総称される慢性的な[[痛み]]が発症する。その発症と維持メカニズムはわかっていないが、近年脊髄におけるミクログリアの役割が注目されている。同疼痛の[[モデル動物]]である人為的な末梢神経損傷モデルや神経障害を伴う病態モデル(糖尿病、がん、[[脊髄損傷]]、帯状疱疹など)において、脊髄のミクログリアは肥大化し、突起の退縮が起こる。さらに、細胞マーカーCD11bやIba1の発現が増加し、損傷ニューロンで発現するCSF1によって[[細胞増殖]]が誘発され、細胞数が2~3倍に増加する<ref name=ref64><pubmed></pubmed></ref> <ref name=ref65><pubmed></pubmed></ref>。
 神経系のダメージや機能不全により神経障害性疼痛と総称される慢性的な[[痛み]]が発症する。その発症と維持メカニズムはわかっていないが、近年脊髄におけるミクログリアの役割が注目されている。同疼痛の[[モデル動物]]である人為的な末梢神経損傷モデルや神経障害を伴う病態モデル(糖尿病、がん、[[脊髄損傷]]、帯状疱疹など)において、脊髄のミクログリアは肥大化し、突起の退縮が起こる。さらに、細胞マーカーCD11bやIba1の発現が増加し、損傷ニューロンで発現するCSF1によって[[細胞増殖]]が誘発され、細胞数が2~3倍に増加する<ref name=ref64><pubmed>15667933</pubmed></ref> <ref name=ref65><pubmed>26642091</pubmed></ref>。


 神経障害性疼痛における脊髄ミクログリアの重要性は、プリン受容体のP2X4受容体の役割から見出された<ref name=ref66><pubmed></pubmed></ref>。神経障害性疼痛[[動物モデル]]の脊髄後角では、転写因子IRF8とIRF5によってP2X4受容体がミクログリアで特異的に高発現し、その受容体を遮断すること、あるいは遺伝子を[[ノックダウン]]や欠損させることで、[[アロディニア]]が著明に抑制された<ref name=ref66 /> <ref name=ref67><pubmed></pubmed></ref> <ref name=ref68><pubmed></pubmed></ref> <ref name=ref69><pubmed></pubmed></ref>。ミクログリアのP2X4受容体がATPで刺激されることでBDNFなどの液性因子が産生放出され<ref name=ref70><pubmed></pubmed></ref>、それらが脊髄後角ニューロンの機能を変調し、神経障害性疼痛を発症することが報告されている<ref name=ref46 />。したがって、ミクログリアとニューロン間の病的連関が神経障害性疼痛の原因であろうと考えられている<ref name=ref71><pubmed></pubmed></ref>。ミクログリアにはP2X4受容体以外にも他の機能分子が発現し、神経障害性疼痛に関与している<ref name=ref72><pubmed></pubmed></ref> <ref name=ref73><pubmed></pubmed></ref> <ref name=ref74><pubmed></pubmed></ref> <ref name=ref75><pubmed></pubmed></ref>。
 神経障害性疼痛における脊髄ミクログリアの重要性は、プリン受容体のP2X4受容体の役割から見出された<ref name=ref66><pubmed>12917686</pubmed></ref>。神経障害性疼痛[[動物モデル]]の脊髄後角では、転写因子IRF8とIRF5によってP2X4受容体がミクログリアで特異的に高発現し、その受容体を遮断すること、あるいは遺伝子を[[ノックダウン]]や欠損させることで、[[アロディニア]]が著明に抑制された<ref name=ref66 /> <ref name=ref67><pubmed>   19515262</pubmed></ref> <ref name=ref68><pubmed>22832225</pubmed></ref> <ref name=ref69><pubmed>24818655</pubmed></ref>。ミクログリアのP2X4受容体がATPで刺激されることでBDNFなどの液性因子が産生放出され<ref name=ref70><pubmed>24818655</pubmed></ref>、それらが脊髄後角ニューロンの機能を変調し、神経障害性疼痛を発症することが報告されている<ref name=ref46 />。したがって、ミクログリアとニューロン間の病的連関が神経障害性疼痛の原因であろうと考えられている<ref name=ref71><pubmed></pubmed></ref>。ミクログリアにはP2X4受容体以外にも他の機能分子が発現し、神経障害性疼痛に関与している<ref name=ref72><pubmed></pubmed></ref> <ref name=ref73><pubmed></pubmed></ref> <ref name=ref74><pubmed></pubmed></ref> <ref name=ref75><pubmed></pubmed></ref>。


 複合性局所疼痛症候群(CRPS)の患者の脊髄において、CD68陽性ミクログリアの活性化が報告されている<ref name=ref76><pubmed></pubmed></ref>。
 複合性局所疼痛症候群(CRPS)の患者の脊髄において、CD68陽性ミクログリアの活性化が報告されている<ref name=ref76><pubmed></pubmed></ref>。

案内メニュー