53
回編集
細 (→産生) |
Taisuketomita (トーク | 投稿記録) 細編集の要約なし |
||
11行目: | 11行目: | ||
{{box|text= | {{box|text= | ||
[[アルツハイマー病]]の病理学的特徴の一つである[[老人斑]]の主要構成成分は、アミロイドβタンパク質(Aβ)と呼ばれる40アミノ酸程度のペプチドである。Aβ沈着が病理学的に捉えられる最初期病変であること、Aβが凝集し、直接[[神経細胞毒性]]を示しうること、そして[[家族性アルツハイマー病]]患者の遺伝学的解析から、Aβの産生および蓄積の異常が[[アルツハイマー病]]の発症に深く関係しているという「[[アミロイドカスケード仮説]] | [[アルツハイマー病]]の病理学的特徴の一つである[[老人斑]]の主要構成成分は、アミロイドβタンパク質(Aβ)と呼ばれる40アミノ酸程度のペプチドである。Aβ沈着が病理学的に捉えられる最初期病変であること、Aβが凝集し、直接[[神経細胞毒性]]を示しうること、そして[[家族性アルツハイマー病]]患者の遺伝学的解析から、Aβの産生および蓄積の異常が[[アルツハイマー病]]の発症に深く関係しているという「[[アミロイドカスケード仮説]]」が現在広く支持されている。Aβは前駆体タンパク質APPの部分断片であり、βセクレターゼおよびγセクレターゼによる連続した切断によって産生、分泌される。そして細胞外で様々な経路において分解を受ける。したがってセクレターゼ活性の制御やAβ分解経路の活性化はアルツハイマー病治療戦略として重要であると考えられている。 | ||
}} | }} | ||
21行目: | 21行目: | ||
==産生== | ==産生== | ||
cDNAクローニングによりAβは前駆タンパク質である[[Amyloid-β precursor protein]]([[APP]])の部分断片であること、[[βセクレターゼ]]および[[γセクレターゼ]]による連続した二段階切断によって切りだされ、細胞外へと[[分泌]]されることが示された<ref><pubmed> 20139999 </pubmed></ref> | cDNAクローニングによりAβは前駆タンパク質である[[Amyloid-β precursor protein]]([[APP]])の部分断片であること、[[βセクレターゼ]]および[[γセクレターゼ]]による連続した二段階切断によって切りだされ、細胞外へと[[分泌]]されることが示された<ref><pubmed> 20139999 </pubmed></ref>。βセクレターゼ活性は[[BACE1]]と呼ばれる[[膜結合型アスパラギン酸プロテアーゼ]]によって担われており、その切断が総Aβ産生量を規定している。γセクレターゼはPresenlinを活性中心サブユニットとする膜タンパク質複合体であり、[[ニカストリン]]、[[Aph-1]]、[[Pen-2]]と膜タンパク複合体として機能する<ref><pubmed> 12660785 </pubmed></ref>。γセクレターゼは特殊な切断様式をとる膜内配列切断アスパラギン酸プロテアーゼ<ref><pubmed> 23585568 </pubmed></ref>であり、APPの膜貫通領域を細胞質側から徐々に切断し最終的にAβの分泌に至らしめる。 | ||
一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]] | 一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]]発症に対して防御的な経路と考えられる。神経細胞における主たるαセクレターゼとしてはADAM9、ADAM10、ADAM17が候補として考えられている。 | ||
(編集コメント:エクトドメインシェディングは本題とはあまり関係ないのではないでしょうか?むしろ、それぞれのセクレターゼに関する詳細を御記述頂いてはと思います。たとえば家族性アルツハイマー病遺伝子産物であるプレシニリンとの関連など)。 | (編集コメント:エクトドメインシェディングは本題とはあまり関係ないのではないでしょうか?むしろ、それぞれのセクレターゼに関する詳細を御記述頂いてはと思います。たとえば家族性アルツハイマー病遺伝子産物であるプレシニリンとの関連など)。 | ||
APPのα、β切断によって細胞外領域が分泌されるが、このような現象は[[エクトドメインシェディング]]とも呼ばれ、様々な膜タンパク質において観察されている<ref><pubmed> 22991436 </pubmed></ref>。そしてシェディングによって生じる膜結合型の断片がさらに引き続いて膜内配列におけるγ切断をうけるI型膜貫通蛋白も多く知られており、APPファミリー分子の他にも[[Notch]]や[[カドヘリン]]、[[CD44]]、[[ニューレグリン]]、[[ErbB4]]、[[アルカデイン]]、[[ニューロリギン]]などがその切断を介して神経・グリア細胞の分化、[[神経可塑性]]や神経生存性に重要な役割を果たすことが示されている<ref><pubmed> 16630834 </pubmed></ref><ref><pubmed> 19038214 </pubmed></ref><ref><pubmed> 21865451 </pubmed></ref><ref><pubmed> 21982365 </pubmed></ref><ref><pubmed> 23083742 </pubmed></ref>。また一部の基質ではAβ様分泌ペプチドの産生が確認されている<ref><pubmed> 20049724 </pubmed></ref><ref><pubmed> 21681798 </pubmed></ref>。しかしその生理的機能は定かではなく、またAβ以外の分子が凝集能を示すことは報告されていない。また多くの場合、シェディングの役割は細胞表面膜に存在する基質の量を低下させることに寄与している。したがってAβが産生されるプロセスは比較的普遍的な膜タンパク質代謝の一つであり<ref><pubmed> 15173829 </pubmed></ref>、シェディングによって生じた膜結合型断片を分解する過程で生じた産物とも考えられる。 | APPのα、β切断によって細胞外領域が分泌されるが、このような現象は[[エクトドメインシェディング]]とも呼ばれ、様々な膜タンパク質において観察されている<ref><pubmed> 22991436 </pubmed></ref>。そしてシェディングによって生じる膜結合型の断片がさらに引き続いて膜内配列におけるγ切断をうけるI型膜貫通蛋白も多く知られており、APPファミリー分子の他にも[[Notch]]や[[カドヘリン]]、[[CD44]]、[[ニューレグリン]]、[[ErbB4]]、[[アルカデイン]]、[[ニューロリギン]]などがその切断を介して神経・グリア細胞の分化、[[神経可塑性]]や神経生存性に重要な役割を果たすことが示されている<ref><pubmed> 16630834 </pubmed></ref><ref><pubmed> 19038214 </pubmed></ref><ref><pubmed> 21865451 </pubmed></ref><ref><pubmed> 21982365 </pubmed></ref><ref><pubmed> 23083742 </pubmed></ref>。また一部の基質ではAβ様分泌ペプチドの産生が確認されている<ref><pubmed> 20049724 </pubmed></ref><ref><pubmed> 21681798 </pubmed></ref>。しかしその生理的機能は定かではなく、またAβ以外の分子が凝集能を示すことは報告されていない。また多くの場合、シェディングの役割は細胞表面膜に存在する基質の量を低下させることに寄与している。したがってAβが産生されるプロセスは比較的普遍的な膜タンパク質代謝の一つであり<ref><pubmed> 15173829 </pubmed></ref>、シェディングによって生じた膜結合型断片を分解する過程で生じた産物とも考えられる。 | ||
39行目: | 40行目: | ||
[[Image:TTfig2.PNG|thumb|350px|'''図2.Aβ産生量を変化させる遺伝子変異'''<br>β及びγセクレターゼによる切断に影響を与える遺伝子変異。]] | [[Image:TTfig2.PNG|thumb|350px|'''図2.Aβ産生量を変化させる遺伝子変異'''<br>β及びγセクレターゼによる切断に影響を与える遺伝子変異。]] | ||
第21番染色体のトリソミーであるダウン症患者脳において早期より老人斑蓄積が見られることから、APP遺伝子とADの関係が示唆されていた。その後見出された家族性アルツハイマー病(FAD)に連鎖する遺伝子変異([http://www.molgen.ua.ac.be/ADMutations/ Alzheimer Disease & Frontotemporal Dementia Mutation Database])の多くはこのAβの産生量(図2)もしくは凝集性を高める性質を示すことが明らかとなった。さらにAPP遺伝子の重複変異を持つFAD家系<ref><pubmed> 16369530 </pubmed></ref>が同定され、[[アルツハイマー病]]におけるアミロイドカスケード仮説の強い根拠となっている。 | |||
===総Aβ産生量を変化させる遺伝子変異=== | ===総Aβ産生量を変化させる遺伝子変異=== | ||
βセクレターゼ切断部位近傍に存在するSwedish変異(KM670/671NL)<ref><pubmed> 1302033 </pubmed></ref>、Italian変異(A673V(Aβ配列としてA2V))<ref><pubmed> 19286555 </pubmed></ref>は、APPのBACE1に対する親和性を高め、総Aβ産生量を上昇させる。またβセクレターゼの切断部位にはAβ配列内にもう一つ存在し、β’切断部位と呼称されている。この切断はN末端が短いAβ産生につながるが、β’切断部位の変異であるLeuven変異(E682K(Aβ配列としてE11K))がβ’切断を抑制し、結果的に総Aβ産生量を増加させる効果を持つ<ref><pubmed> 21500352 </pubmed></ref>。 | |||
一方ごく最近、アイスランド国民の全ゲノムシーケンシング解析からアルツハイマー病および老化に伴う認知機能低下に対して防御的に作用するrare variantとしてAβ産生を40%低下させるIcelandic変異(A673T(Aβ配列としてA2T))が同定された<ref><pubmed> 22801501 </pubmed></ref>。この変異はβセクレターゼによる切断効率を低下させることが示されている。この変異はAβ産生量の変化がアルツハイマー病の発症リスクを規定していることを明確にしたと言える。 | 一方ごく最近、アイスランド国民の全ゲノムシーケンシング解析からアルツハイマー病および老化に伴う認知機能低下に対して防御的に作用するrare variantとしてAβ産生を40%低下させるIcelandic変異(A673T(Aβ配列としてA2T))が同定された<ref><pubmed> 22801501 </pubmed></ref>。この変異はβセクレターゼによる切断効率を低下させることが示されている。この変異はAβ産生量の変化がアルツハイマー病の発症リスクを規定していることを明確にしたと言える。 | ||
これまでにBACE1遺伝子変異は報告されていないが、アルツハイマー病患者脳や[[脳脊髄液]]中でBACE1タンパク質<ref><pubmed> 12514700 </pubmed></ref>や活性<ref><pubmed> 12223024 </pubmed></ref><ref><pubmed> 14978286 </pubmed></ref> | これまでにBACE1遺伝子変異は報告されていないが、アルツハイマー病患者脳や[[脳脊髄液]]中でBACE1タンパク質<ref><pubmed> 12514700 </pubmed></ref>や活性<ref><pubmed> 12223024 </pubmed></ref><ref><pubmed> 14978286 </pubmed></ref>の上昇が報告されている。すなわち、老化に伴うBACE1活性の変動が孤発性アルツハイマー病発症機序に影響を与えている可能性が示唆されている。また最近になり、FADにおいてADAM10の機能欠失型変異が見出され、非Aβ産生経路の抑制がAPP代謝をAβ産生へとシフトさせ、アルツハイマー病を惹起することも示された<ref><pubmed> 24055016 </pubmed></ref>。 | ||
===凝集性の高いAβ42の産生比率を変化させる遺伝子変異=== | ===凝集性の高いAβ42の産生比率を変化させる遺伝子変異=== | ||
53行目: | 54行目: | ||
同様にAβのC末側に存在するIranian変異(T714A)、Austrian変異(T714I)、German変異(V715A)、French変異(V715M)、Florida変異(I716V)、Iberian変異(I716F)、London変異(V717Iの他、L、F、G)、Australian変異(L723P)、Belgian変異(K724N)などは、いずれもγセクレターゼによる切断を変化させ、総Aβ産生量には大きな影響を与えずに特に凝集性の高いAβ42の産生比率(総Aβ産生量に対する)を上昇させる。またFlemish変異(A692G(Aβ配列としてA21G))はAβ産生量を増大させる。これはA21を含む領域がAPPに存在するγセクレターゼ活性を抑制するドメインであり、Flemish変異はその抑制効果を低下させるため、Aβ産生量を増加させると考えられている<ref><pubmed> 20062056 </pubmed></ref>。 | 同様にAβのC末側に存在するIranian変異(T714A)、Austrian変異(T714I)、German変異(V715A)、French変異(V715M)、Florida変異(I716V)、Iberian変異(I716F)、London変異(V717Iの他、L、F、G)、Australian変異(L723P)、Belgian変異(K724N)などは、いずれもγセクレターゼによる切断を変化させ、総Aβ産生量には大きな影響を与えずに特に凝集性の高いAβ42の産生比率(総Aβ産生量に対する)を上昇させる。またFlemish変異(A692G(Aβ配列としてA21G))はAβ産生量を増大させる。これはA21を含む領域がAPPに存在するγセクレターゼ活性を抑制するドメインであり、Flemish変異はその抑制効果を低下させるため、Aβ産生量を増加させると考えられている<ref><pubmed> 20062056 </pubmed></ref>。 | ||
一方で、ほとんどのFADは[[Presenilin 1]]もしくは[[Presenilin 2|2]] | 一方で、ほとんどのFADは[[Presenilin 1]]もしくは[[Presenilin 2|2]]遺伝子上の点突然変異に連鎖する。Presenilin遺伝子のFAD変異がどのような影響を及ぼしているかは未だ定かではないが、何れにせよいずれの変異もγセクレターゼによる切断様式を変化させ、Aβ42の産生比率を特異的に増加させることでアルツハイマー病の発症過程を促進していると考えられている。 | ||
βセクレターゼに対するIcelandic変異のように、γセクレターゼによるAβ42産生を抑制する変異は未だ見出されていないが、アルツハイマー病に関連する遺伝学的予防因子<i>PICALM</i><ref><pubmed> 24162737 </pubmed></ref>の発現量低下がγセクレターゼの細胞内輸送を変化させることでAβ42産生量を低下させることが報告されている。 | βセクレターゼに対するIcelandic変異のように、γセクレターゼによるAβ42産生を抑制する変異は未だ見出されていないが、アルツハイマー病に関連する遺伝学的予防因子<i>PICALM</i><ref><pubmed> 24162737 </pubmed></ref>の発現量低下がγセクレターゼの細胞内輸送を変化させることでAβ42産生量を低下させることが報告されている。 |
回編集